1
|
Stenspil SG, Laursen BW. Photophysics of fluorescent nanoparticles based on organic dyes - challenges and design principles. Chem Sci 2024; 15:8625-8638. [PMID: 38873083 PMCID: PMC11168078 DOI: 10.1039/d4sc01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Fluorescent nanoparticles have become attractive for bioanalysis and imaging, due to their high brightness and photostability. Many different optical materials have been applied in fluorescent nanoparticles with a broad range of properties and characteristics. One appealing approach is the incorporation of molecular organic fluorophores in nanoparticles with the intention of transferring their known attractive solution-state properties directly to the nanoparticles. However, as molecular dyes are packed closely together in the nanoparticles their interactions most often result in fluorescence quenching and change in spectral properties making this approach challenging. In this perspective we will first discuss the origins of quenching and spectral shifts observed in dye based nanoparticles. On this background, we will then describe various designs of dye based NPs and how they address the challenges of dye-dye interactions and quenching. Our aim is to provide a general framework for understanding the supramolecular mechanisms that determine the photophysics of dye based nanoparticles. This framework of molecular photophysics and its relation to the internal structure of dye based nanoparticles can hopefully serve to assist rational design and optimization of new and improved dye based nanoparticles.
Collapse
Affiliation(s)
- Stine G Stenspil
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
2
|
Tang Q, Ren H, Kochovski Z, Cheng L, Zhang K, Yuan J, Zhang W. Topological Effects on Cyclic Co‐Poly(Ionic Liquid)s Self‐Assembly. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qingquan Tang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology Wuhan Textile University Wuhan 430200 China
| | - Hao Ren
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology Wuhan Textile University Wuhan 430200 China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| | - Lisheng Cheng
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry The Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University Stockholm 10691 Sweden
| | - Weiyi Zhang
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| |
Collapse
|
3
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
4
|
Collot M, Schild J, Fam KT, Bouchaala R, Klymchenko AS. Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer. ACS NANO 2020; 14:13924-13937. [PMID: 33022173 DOI: 10.1021/acsnano.0c06348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent nanoparticles (NPs), owing to their superior brightness, are an attractive alternative to organic dyes. However, their cellular applications remain limited because of their large size, poor homogeneity, and nonspecific interactions in biological media. Herein, we propose a concept of monomolecular fluorescent organic nanoparticles of high brightness and very small size (10-14 nm) built of a single amphiphilic polymer bearing specially designed fluorescent dyes. We found that high PEGylation of poly(maleic anhydride-alt-1-octadecene (PMAO) favors a single-chain polymer folding into monomolecular stealth NPs with highly reduced nonspecific interactions with proteins and live cells. To ensure high stability of our NPs, the fluorophores (BODIPYs) are covalently linked to the polymer through an optimized linker. Among tested linkers of different lengths and polarity, a short medium-polar linker favoring location of the dyes at NPs interface ensures good fluorescence quantum yield and small particle size. The fluorescence brightness of these NPs has been dramatically enhanced by increasing the bulkiness of the BODIPY dyes that prevents their H-aggregation, reaching 2500000 M-1 cm-1 (extinction coefficient × quantum yield). Fluorescence microscopy revealed that the single-particle brightness of these NPs is ∼5-fold higher than that of QDot-585 using the same excitation wavelength (532 nm). Finally, when microinjected inside cells, these small and stealth NPs (10 nm diameter) distribute more evenly than 20 nm QDots inside the cytosol, showing similar spreading as a fluorescent protein. Thus, the developed monomolecular NPs, owing to their small size and stealth properties, are artificial analogues of fluorescent proteins, surpassing the latter >50-fold in terms of brightness.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Jérémy Schild
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Kyong T Fam
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Redouane Bouchaala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
5
|
Broadwater D, Bates M, Jayaram M, Young M, He J, Raithel AL, Hamann TW, Zhang W, Borhan B, Lunt RR, Lunt SY. Modulating cellular cytotoxicity and phototoxicity of fluorescent organic salts through counterion pairing. Sci Rep 2019; 9:15288. [PMID: 31653966 PMCID: PMC6814864 DOI: 10.1038/s41598-019-51593-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Light-activated theranostics offer promising opportunities for disease diagnosis, image-guided surgery, and site-specific personalized therapy. However, current fluorescent dyes are limited by low brightness, high cytotoxicity, poor tissue penetration, and unwanted side effects. To overcome these limitations, we demonstrate a platform for optoelectronic tuning, which allows independent control of the optical properties from the electronic properties of fluorescent organic salts. This is achieved through cation-anion pairing of organic salts that can modulate the frontier molecular orbital without impacting the bandgap. Optoelectronic tuning enables decoupled control over the cytotoxicity and phototoxicity of fluorescent organic salts by selective generation of mitochondrial reactive oxygen species that control cell viability. We show that through counterion pairing, organic salt nanoparticles can be tuned to be either nontoxic for enhanced imaging, or phototoxic for improved photodynamic therapy.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Matthew Bates
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mayank Jayaram
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Margaret Young
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Jianzhou He
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Austin L Raithel
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Environmental Science and Policy Program, Michigan State University, East Lansing, MI, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Andreiuk B, Reisch A, Bernhardt E, Klymchenko AS. Fighting Aggregation‐Caused Quenching and Leakage of Dyes in Fluorescent Polymer Nanoparticles: Universal Role of Counterion. Chem Asian J 2019; 14:836-846. [DOI: 10.1002/asia.201801592] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bohdan Andreiuk
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021University of Strasbourg 74 route du Rhin 67401 Illkirch Cedex France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021University of Strasbourg 74 route du Rhin 67401 Illkirch Cedex France
| | - Eduard Bernhardt
- Inorganic Chemistry Department of the University of Wuppertal Gaussstr. 20 42119 Wuppertal Germany
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021University of Strasbourg 74 route du Rhin 67401 Illkirch Cedex France
| |
Collapse
|
7
|
Svechkarev D, Mohs AM. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Curr Med Chem 2019; 26:4042-4064. [PMID: 29484973 PMCID: PMC6703954 DOI: 10.2174/0929867325666180226111716] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral properties tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in the design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications.
Collapse
Affiliation(s)
- Denis Svechkarev
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| | - Aaron M. Mohs
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| |
Collapse
|
8
|
Kim JY, Hwang TG, Woo SW, Lee JM, Namgoong JW, Yuk SB, Chung SW, Kim JP. Simple modification of basic dyes with bulky &symmetric WCAs for improving their solubilities in organic solvents without color change. Sci Rep 2017; 7:46178. [PMID: 28383019 PMCID: PMC5382776 DOI: 10.1038/srep46178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.
Collapse
Affiliation(s)
- Jeong Yun Kim
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Gyu Hwang
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Wun Woo
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Moon Lee
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woong Namgoong
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sim Bum Yuk
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Won Chung
- Samsung Electronics Co., Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - Jae Pil Kim
- Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|