1
|
Naseem F, Lu P, Zeng J, Lu Z, Ng YH, Zhao H, Du Y, Yin Z. Solid Nanoporosity Governs Catalytic CO 2 and N 2 Reduction. ACS NANO 2020; 14:7734-7759. [PMID: 32539341 DOI: 10.1021/acsnano.0c02731] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Global demand for green and clean energy is increasing day by day owing to ongoing developments by the human race that are changing the face of the earth at a rate faster than ever. Exploring alternative sources of energy to replace fossil fuel consumption has become even more vital to control the growing concentration of CO2, and reduction of CO2 into CO or other useful hydrocarbons (e.g., C1 and C≥2 products), as well as reduction of N2 into ammonia, can greatly help in this regard. Various materials have been developed for the reduction of CO2 and N2. The introduction of pores in these materials by porosity engineering has been demonstrated to be highly effective in increasing the efficiency of the involved redox reactions, over 40% increment for CO2 reduction to date, by providing an increased number of exposed facets, kinks, edges, and catalytically active sites of catalysts. By shaping the surface porous structure, the selectivity of the redox reaction can also be enhanced. In order to better understand this area benefiting rational design for future solutions, this review systematically summarizes and constructively discusses the porosity engineering in catalytic materials, including various synthesis methods, characterization of porous materials, and the effects of porosity on performance of CO2 reduction and N2 reduction.
Collapse
Affiliation(s)
- Fizza Naseem
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Peilong Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jianping Zeng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Ziyang Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Haitao Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300071, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Tan Z, Cao L, Yang Y, Yan Q, Liu Q, Zhang W, Zhao P, Li Y, Zhang D. Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide. Mikrochim Acta 2019; 186:693. [DOI: 10.1007/s00604-019-3799-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
|
3
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P. Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.146] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|