1
|
Wang CY, Jia JG, Weng GG, Qin MF, Xu K, Zheng LM. Macroscopic handedness inversion of terbium coordination polymers achieved by doping homochiral ligand analogues. Chem Sci 2023; 14:10892-10901. [PMID: 37829014 PMCID: PMC10566478 DOI: 10.1039/d3sc03230b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.
Collapse
Affiliation(s)
- Chang-Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
2
|
Das P, Phan AT. Tetrad-binding ligands do not bind specifically to left-handed G-quadruplexes. Chem Commun (Camb) 2022; 58:11264-11267. [PMID: 36112098 DOI: 10.1039/d2cc03374g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplexes (G4s) are attractive anticancer targets. While right-handed G4s have been extensively investigated with many specific ligands reported, left-handed G4s formed by natural DNA have been recently discovered. Here we show that ligands specific for right-handed G4s, such as Phen-DC3 and RHAU peptide, do not bind specifically to left-handed G4s. In right-handed G4s, these ligands can displace capping overhangs and/or loops to stack on the exposed terminal tetrads. In contrast, the presence of tight T-capping in left-handed G4s hinders access to the tetrads.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
3
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chen K, He Z, Xiong W, Wang CJ, Zhou X. Enantioselective Diels–Alder reactions with left-handed G-quadruplex DNA-based catalysts. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Das P, Winnerdy FR, Maity A, Mechulam Y, Phan AT. A novel minimal motif for left-handed G-quadruplex formation. Chem Commun (Camb) 2021; 57:2527-2530. [PMID: 33690751 DOI: 10.1039/d0cc08146a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent study on the left-handed G-quadruplex (LHG4) DNA revealed a 12-nt minimal motif GTGGTGGTGGTG with the ability to independently form an LHG4 and to drive an adjacent sequence to LHG4 formation. Here we have identified a second LHG4-forming motif, GGTGGTGGTGTG, and determined the X-ray crystal structure of an LHG4 involving this motif. Our structural analysis indicated the role of split guanines and single thymine loops in promoting LHG4 formation.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
6
|
Das P, Ngo KH, Winnerdy FR, Maity A, Bakalar B, Mechulam Y, Schmitt E, Phan AT. Bulges in left-handed G-quadruplexes. Nucleic Acids Res 2021; 49:1724-1736. [PMID: 33503265 PMCID: PMC7897477 DOI: 10.1093/nar/gkaa1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
G-quadruplex (G4) DNA structures with a left-handed backbone progression have unique and conserved structural features. Studies on sequence dependency of the structures revealed the prerequisites and some minimal motifs required for left-handed G4 formation. To extend the boundaries, we explore the adaptability of left-handed G4s towards the existence of bulges. Here we present two X-ray crystal structures and an NMR solution structure of left-handed G4s accommodating one, two and three bulges. Bulges in left-handed G4s show distinct characteristics as compared to those in right-handed G4s. The elucidation of intricate structural details will help in understanding the possible roles and limitations of these unique structures.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Khac Huy Ngo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
7
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
8
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
9
|
Winnerdy FR, Bakalar B, Maity A, Vandana JJ, Mechulam Y, Schmitt E, Phan AT. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res 2019; 47:8272-8281. [PMID: 31216034 PMCID: PMC6735952 DOI: 10.1093/nar/gkz349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - J Jeya Vandana
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
10
|
Liu M, Liu Y, Wu F, Du Y, Zhou X. Specific stabilization of DNA G-quadruplex structures with a chemically modified complementary probe. Bioorg Med Chem 2019; 27:1962-1965. [PMID: 30962113 DOI: 10.1016/j.bmc.2019.03.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
The DNA G-quadruplex is an important higher-order structure formed from guanine-rich DNA sequences. There are many molecules which can stabilize this structure. However, the selectivity of these ligands to different G-quadruplexes was not satisfactory. Herein, we designed and synthesized a chemically modified G-quadruplex probe, Razo-DNA, for the unique stabilization of the G-quadruplex. Razo-DNA consists of two fragments: The first is an organic molecular moiety which can stabilize G-quadruplex structures, and the second is a DNA molecule that is complementary with a sequence adjacent to the guanine-rich sequence of targeted DNA. Further studies showed that Razo-DNA could precisely stabilize the targeted DNA G-quadruplex structures in vitro.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaqian Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fan Wu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuhao Du
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
12
|
Hu X, Yang D, Yao T, Gao R, Wumaier M, Shi S. Regulation of multi-factors (tail/loop/link/ions) for G-quadruplex enantioselectivity of Δ- and Λ- [Ru(bpy) 2(dppz-idzo)] 2. Dalton Trans 2018; 47:5422-5430. [PMID: 29594288 DOI: 10.1039/c8dt00501j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral recognition of DNA molecules is important because much evidence has indicated that transformations of chirality and diverse conformations of DNA are involved in a series of key biological events. Among these, enrichment of G-quadruplexes (GQs) in the genome, and the exploration of their multiple structures, has aroused great interest. Herein, we compared nearly 100 different sequences with 3'-tail sequences of variable length or different linkers or diverse loops and mutative ionic concentrations. All sequences were capable of forming stable GQs, with fluorescence signal enhancement upon binding with Δ- and Λ- [Ru(bpy)2(dppz-idzo)]2+ (Δ/Λ-1). Our results show that multiple factors, including the 3'-tail length, linkers, loop length and ionic concentration, regulate the enantioselectivity of GQs. Furthermore, molecular docking simulations revealed that chiral recognition of GQs depends on the binding site. To the best of our knowledge, this is the first systematic study regarding the regulation of multi-factors for GQ selectivity of chiral Ru-complexes. These results will serve as a useful reference for enantioselective recognition of genomic GQs and may facilitate the development of chiral anticancer agents for targeting GQs.
Collapse
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, 200092 Shanghai, PR China.
| | | | | | | | | | | |
Collapse
|
13
|
Dudek M, Deiana M, Pokladek Z, Mlynarz P, Samoc M, Matczyszyn K. Light-driven chiroptical photoswitchable DNA assemblies mediated by bioinspired photoresponsive molecules. NANOSCALE 2018; 10:11302-11306. [PMID: 29892748 DOI: 10.1039/c8nr01784k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We show that the incorporation of chiral bioinspired photochromic compounds into inherently chiral DNA matrices enables the building of smart nanoscale photoswitchable chiroptical assemblies tunable over a wide range of wavelengths. Moreover, the use of light as external trigger affords precise control of the resulting hybrid DNA nanostructures, and their chiroptical activities can be spatially modulated without photochemical fatigue.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Harkness RW, Mittermaier AK. G-quadruplex dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28642152 DOI: 10.1016/j.bbapap.2017.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|