1
|
Lima Oliveira R, Ledwa KA, Chernyayeva O, Praetz S, Schlesiger C, Kepinski L. Cerium Oxide Nanoparticles Confined in Doped Mesoporous Carbons: A Strategy to Produce Catalysts for Imine Synthesis. Inorg Chem 2023; 62:13554-13565. [PMID: 37555784 DOI: 10.1021/acs.inorgchem.3c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A group of (doped N or P) carbons were synthesized using soluble starch as a carbon precursor. Further, ceria nanoparticles (NPs) were confined into these (doped) carbon materials. The obtained solids were characterized by various techniques such as N2 physisorption, XRD, TEM, SEM, XPS, and XAS. These materials were used as catalysts for the oxidative coupling between benzyl alcohol and aniline as the model reaction. Ceria immobilized on mesoporous-doped carbon shows higher activity than the other materials, benchmark catalysts, and most of the previously reported catalysts. The control of the ceria NP size, the presence of Ce3+ cations, and an increment in the disorder in the ceria NP structure caused by a support-ceria interaction could increase the number of oxygen vacancies and improve its catalytic performance. CN-meso/CeO2 was also used as the catalyst for a rich scope of substrates, such as substituted aromatic alcohols, linear alcohols, and different types of amines. The influence of various reaction parameters (substrate content, reaction temperature, and catalyst content) on the activity of this catalyst was also checked.
Collapse
Affiliation(s)
- Rafael Lima Oliveira
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Karolina A Ledwa
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Olga Chernyayeva
- Institute of Physical Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Sebastian Praetz
- Department of Optics and Atomic Physics, Technische Universitat Berlin, 10623 Berlin, Germany
| | - Christopher Schlesiger
- Department of Optics and Atomic Physics, Technische Universitat Berlin, 10623 Berlin, Germany
| | - Leszek Kepinski
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
2
|
Li M, Li W, Yang Y, Yu D, Lin J, Wan R, Zhu H. Remarkably efficient Pt/CeO 2-Al 2O 3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al 2O 3 and CeO 2. CHEMOSPHERE 2023; 327:138515. [PMID: 36972872 DOI: 10.1016/j.chemosphere.2023.138515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Monoiodoacetic acid (MIAA) is one of the highly toxic halogenated disinfection by-products, which is formed during water disinfection processes. Catalytic hydrogenation with supported noble metal catalyst is a green and effective technique for the transformation of halogenated pollutant, but its activity still needs to be identified. In this study, Pt nanoparticles were supported on CeO2 modified γ-Al2O3 (Pt/CeO2-Al2O3) by chemical deposition method and the synergistic effect of Al2O3 and CeO2 on catalytic hydrodeiodination (HDI) of MIAA was systematically studied. Characterizations revealed that Pt dispersion could be improved by the introduced CeO2 through the formation of Ce-O-Pt bond and MIAA adsorption could be facilitated by high Zeta potential of Al2O3 component. Furthermore, optimal Ptn+/Pt0 could be obtained by adjusting CeO2 deposition amount on Al2O3, which could effectively facilitate the activation of C-I bond. Therefore, Pt/CeO2-Al2O3 exhibited remarkable catalytic activities and TOF values compared with those of Pt/CeO2 and Pt/Al2O3. Through detailed kinetic experiments and characterization, the extraordinary catalytic performance of Pt/CeO2-Al2O3 can be attributed to the abundant Pt sites as well as the synergistic effect between CeO2 and Al2O3.
Collapse
Affiliation(s)
- Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Wen Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Dailiang Yu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Jingling Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
3
|
Yu H, Liu J, Wan Q, Zhao G, Gao E, Wang J, Xu B, Zhao G, Fan X. Synergistic effect of acid-base and redox properties of nano Au/CeO2-cube on selective hydrogenation of nitrobenzene to aniline. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Li J, Hu R, Liu W, Gao D, Zhao H, Li C, Jiang X, Chen G. Interfacial Reaction-Directed Green Synthesis of CeO 2-MnO 2 Catalysts for Imine Production through Oxidative Coupling of Alcohols and Amines. Inorg Chem 2023; 62:3692-3702. [PMID: 36764007 DOI: 10.1021/acs.inorgchem.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Direct oxidative coupling of alcohols with amines over cheap but efficient catalysts is a promising choice for imine formation. In this study, porous CeO2-MnO2 binary oxides were prepared via an interfacial reaction between Ce2(SO4)3 and KMnO4 at room temperature without any additives. The as-prepared porous CeO2-MnO2 catalyst has a higher fraction of Ce3+, Mn3+, and Mn4+ and contains larger surface area and more oxygen vacancies. During the oxidative coupling reaction of alcohol with amine to imine, the as-obtained CeO2-MnO2 catalyst is motivated by the above encouraging characteristics and exhibits superior catalytic activity (98% conversion and 97% selectivity) and can also work effectively under a wide scope of temperatures and substrates. The in-depth in situ DRIFTS and density functional theory (DFT) results demonstrate that there is a strong interaction between CeO2 and MnO2 in the CeO2-MnO2 catalyst, exhibiting especially a positive synergistic effect in the direct coupling of alcohol and amine reaction.
Collapse
Affiliation(s)
- Jingwen Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Wei Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Daowei Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Chunsheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China.,School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| |
Collapse
|
5
|
More GS, Kushwaha N, Bal R, Srivastava R. Thermal and photocatalytic cascade one-pot synthesis of secondary amine using multifunctional Pd decorated MOF-derived CeO2. J Colloid Interface Sci 2022; 619:14-27. [DOI: 10.1016/j.jcis.2022.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
|
6
|
Chang X, Ding H, Yang J. CeO2 Structure Adjustment by H2O via the Microwave–Ultrasonic Method and Its Application in Imine Catalysis. Front Chem 2022; 10:916092. [PMID: 35711956 PMCID: PMC9194526 DOI: 10.3389/fchem.2022.916092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
CeO2 with fusiform structures were prepared by the combined microwave–ultrasonic method, and their morphologies and surface structure were changed by simply adding different amounts of H2O (1–5 ml) to the precursor system. The addition of H2O changed the PVP micelle structure and the surface state, resulting in CeO2 with a different specific surface area (64–111 m2 g−1) and Ce3+ defects (16.5%–28.1%). The sample with 2 ml H2O exhibited a high surface area (111.3 m2∙g−1) and relatively more surface defects (Ce3+%: 28.1%), resulting in excellent catalytic activity (4.34 mmol g−1 h−1).
Collapse
Affiliation(s)
- Xijiang Chang
- College of Science, Donghua University, Shanghai, China
| | - Huihui Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Jingxia Yang, ,
| |
Collapse
|
7
|
Ma J, Zhang F, Tan Y, Wang S, Chen H, Zheng L, Liu H, Li R. Promoted Electron Transfer and Surface Absorption by Single Nickel Atoms for Photocatalytic Cross-Coupling of Aromatic Alcohols and Aliphatic Amines under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18383-18392. [PMID: 35426663 DOI: 10.1021/acsami.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The preparation of imines has drawn increasing attention as they are fundamental intermediates in the production of pharmaceuticals, agricultures, and fine chemicals. Nevertheless, current approaches for imines synthesis mainly focus on thermally driven reactions which always involve the consumption of high price noble metal catalysts, expensive ligands, strong base, and harsh reaction conditions. Herein, we demonstrate single atom nickel anchored on polymeric carbon nitride (Ni-SA@PCN) in Ni-N4 structure for visible light-promoted crossed coupling between aromatic alcohols and aliphatic amines. As expected, the Ni atoms dispersed carbon nitride demonstrates an obviously improved charge separation and transfer as reflected in UV-vis, fluorescence intensity and lifetime, photocurrent density, and electrochemical impedance characterizations. More impressively, the density functional theory (DFT) calculations also reveals that the presence of Ni atoms can dramatically accelerate the absorption of reactive substrates on the surface of PCN. The decreased absorption energy from -0.51 to -3.35 eV, associated with increased O═O bond length from 1.226 to 1.371 Å indicates a huge advantage of single Ni atom on oxygen activation. As a result, the obtained Ni-SA@PCN photocatalyst shows a prominent catalytic efficiency in imines formation with a reaction conversion of 73% and selectivity of >99%. Lastly, the photocatalytic reactions displays an excellent compatibility with various imines being achieved with high yield.
Collapse
Affiliation(s)
- Jun Ma
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Feng Zhang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Ya Tan
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Song Wang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
8
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Cao X, Dai Y, Qin J, Qi X, Qin Y, Chen M, Ma J, Long Y. Ce-Doped α-FeOOH as a High-Performance Catalyst for Atom-Economic Synthesis of Imines: Enhanced Oxygen-Activating Capacity and Acidic Property. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yiwei Dai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yao Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ming Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
10
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
11
|
Geng L, Li G, Zhang X, Wang X, Li C, Liu Z, Zhang DS, Zhang YZ, Wang G, Han H. Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Wu S, Wang Y, Cao Q, Zhao Q, Fang W. Efficient Imine Formation by Oxidative Coupling at Low Temperature Catalyzed by High-Surface-Area Mesoporous CeO 2 with Exceptional Redox Property. Chemistry 2021; 27:3019-3028. [PMID: 33037678 DOI: 10.1002/chem.202003915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/09/2022]
Abstract
High-surface-area mesoporous CeO2 (hsmCeO2 ) was prepared by a facile organic-template-induced homogeneous precipitation process and showed excellent catalytic activity in imine synthesis in the absence of base from primary alcohols and amines in air atmosphere at low temperature. For comparison, ordinary CeO2 and hsmCeO2 after different thermal treatments were also investigated. XRD, N2 physisorption, UV-Raman, H2 temperature-programmed reduction, O2 temperature-programmed desorption, EPR spectroscopy, and X-ray photoelectron spectroscopy were used to unravel the structural and redox properties. The hsmCeO2 calcined at 400 °C shows the highest specific surface area (158 m2 g-1 ), the highest fraction of surface coordinatively unsaturated Ce3+ ions (18.2 %), and the highest concentration of reactive oxygen vacancies (2.4×1015 spins g-1 ). In the model reaction of oxidative coupling of benzyl alcohol and aniline, such an exceptional redox property of the hsmCeO2 catalyst can boost benzylideneaniline formation (2.75 and 5.55 mmol g ceria - 1 h-1 based on >99 % yield at 60 and 80 °C, respectively) in air with no base additives. It can also work effectively at a temperature of 30 °C and in gram-scale synthesis. These are among the best results for all benchmark ceria catalysts in the literature. Moreover, the hsmCeO2 catalyst shows a wide scope towards primary alcohols and amines with good to excellent yield of imines. The influence of reaction parameters, the reusability of the catalyst, and the reaction mechanism were investigated.
Collapse
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Yinghao Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| | - Qihua Zhao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| |
Collapse
|
13
|
Yang J, Peng S, Shi Y, Ma S, Ding H, Rupprechter G, Wang J. Fast visual evaluation of the catalytic activity of CeO2: Simple colorimetric assay using 3,3′,5,5′-tetramethylbenzidine as indicator. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
|
15
|
Yang J, Ding H, Wang J, Yigit N, Xu J, Rupprechter G, Zhang M, Li Z. Energy-Guided Shape Control Towards Highly Active CeO2. Top Catal 2020. [DOI: 10.1007/s11244-020-01357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Tamura M, Li Y, Tomishige K. One-pot imine synthesis from methylarenes and anilines under air over heterogeneous Cu oxide-modified CeO2 catalyst. Chem Commun (Camb) 2020; 56:7337-7340. [DOI: 10.1039/d0cc02969f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective one-pot synthesis of imines from methylarenes and anilines with air as an oxidant was substantiated by heterogeneous Cu oxide-modified CeO2 (CuOx–CeO2) catalyst without additives.
Collapse
Affiliation(s)
- Masazumi Tamura
- Research Center for Artificial Photosynthesis
- Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka
- Japan
| | - Yingai Li
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
17
|
Qin J, Long Y, Gou G, Wu W, Luo Y, Cao X, Luo S, Wang K, Ma J. Tuning effect of amorphous Fe 2O 3 on Mn 3O 4 for efficient atom-economic synthesis of imines at low temperature: improving [O] transfer cycle of Mn 3+/Mn 2+ in Mn 3O 4. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01021a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Fe2O3 modified Mn3O4 catalyst (Fe5Mn5-100) has been prepared by adopting a simple co-precipitation method following low temperature baking. Fe5Mn5-100 showed exceptionally high catalytic activity for the production of imine.
Collapse
Affiliation(s)
- Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Galian Gou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Wei Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yutong Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Shicheng Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
18
|
Geng L, Jian W, Jing P, Zhang W, Yan W, Bai FQ, Liu G. Crystal phase effect of iron oxides on the aerobic oxidative coupling of alcohols and amines under mild conditions: A combined experimental and theoretical study. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Xu H, Shi JL, Hao H, Li X, Lang X. Visible light photocatalytic aerobic oxidative synthesis of imines from alcohols and amines on dye-sensitized TiO2. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Sindhuja D, Vasanthakumar P, Bhuvanesh N, Karvembu R. Catalytic Assessment of Copper(I) Complexes and a Polymer Analog towards the One‐Pot Synthesis of Imines and Quinoxalines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dharmalingam Sindhuja
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | | | | | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
21
|
Structure design of CeO2–MoS2 composites and their efficient activity for imine synthesis. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01114-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhang N, Wang X, Geng L, Liu Z, Zhang X, Li C, Zhang D, Wang Z, Zhao G. Metallic Ni nanoparticles embedded in hierarchical mesoporous Ni(OH)2: A robust and magnetic recyclable catalyst for hydrogenation of 4-nitrophenol under mild conditions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Tomar R, Ebitani K, Chandra R. Hydrotalcite‐Supported Ceria Nanoparticles as a Heterogeneous Catalyst for One‐Pot Synthesis of Imines under Atmospheric Air. ChemistrySelect 2019. [DOI: 10.1002/slct.201900750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ravi Tomar
- Drug Discovery & Development LaboratoryDepartment of ChemistryUniversity of Delhi Delhi- 110007 India
- School of Materials ScienceJapan Advanced Institute of Science and Technology, 1–1 Asahidai, Nomi Ishikawa 923–1292 Japan
| | - Kohki Ebitani
- School of Materials ScienceJapan Advanced Institute of Science and Technology, 1–1 Asahidai, Nomi Ishikawa 923–1292 Japan
| | - Ramesh Chandra
- Drug Discovery & Development LaboratoryDepartment of ChemistryUniversity of Delhi Delhi- 110007 India
- Dr. B. R. Ambedkar Center for Biomedical ResearchUniversity of Delhi Delhi- 110007 India
| |
Collapse
|
24
|
CeO 2 immobilized on magnetic core-shell microparticles for one-pot synthesis of imines from benzyl alcohols and anilines: Support effects for activity and stability. J Colloid Interface Sci 2019; 538:709-719. [PMID: 30503239 DOI: 10.1016/j.jcis.2018.11.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022]
Abstract
Four types of core-shell materials with magnetic Fe3O4 microparticles as the core were prepared through different approaches using dopamine, glucose, tetrabutyl orthotitanate (TBOT), and tetraethyl orthosilicate (TEOS) as the shell precursor, respectively. CeO2 nanoparticles (NPs) was successfully immobilized onto these supports to fabricate efficient catalysts for the tandem catalytic synthesis of imines from benzyl alcohols and anilines at low temperature under air atmosphere. The as-prepared catalysts were detailedly characterized by TEM, EDX, XRD, FT-IR, XPS VSM, ICP, and CO2-TPD. Interestingly, these prepared catalysts showed higher catalytic activity than reported CeO2 catalysts. Most attractively, the catalyst with a shell ofnitrogen-doped-carbon derived from dopamine exhibited the best catalytic property, and outstanding stability and recyclability in the cycle experiment. According to the XPS and CO2-TPD characterization, the enhanced performance of Fe3O4@CN@CeO2 composites can be attributed to two reasons as follows: (1) the immobilization of CeO2 improved its alkalinity at low reaction temperature, and alkalinity is beneficial to promote the oxidation of alcohols to benzaldehyde, which is the rate-determining step for this tandem reaction; (2) the doped nitrogen generated Lewis basic site could satisfactorily stabilize Ce3+/Ce4+ pair of CeO2, which determined the catalytic activity and stability of CeO2 based catalysts for this tandem reaction. Moreover, the prepared catalysts could be facilely recovered from the reaction mixture with an external magnet. This work may provide a useful strategy for constructing CeO2 based catalysts for green and sustainable catalysis.
Collapse
|
25
|
Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Zhang M, Wu S, Bian L, Cao Q, Fang W. One-pot synthesis of Pd-promoted Ce–Ni mixed oxides as efficient catalysts for imine production from the direct N-alkylation of amine with alcohol. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01857j] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-promoted CeNiXOY mixed oxides showed high production of imines through the oxidative coupling of amines with alcohols due to the synergistic effect between Pd0 species and redox properties of CeNiXOY.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Advanced Analysis and Measurement Center
- Yunnan University
| | - Shipeng Wu
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Advanced Analysis and Measurement Center
- Yunnan University
| | - Longchun Bian
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Advanced Analysis and Measurement Center
- Yunnan University
| | - Qiue Cao
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Advanced Analysis and Measurement Center
- Yunnan University
| | - Wenhao Fang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Advanced Analysis and Measurement Center
- Yunnan University
| |
Collapse
|
27
|
Long Y, Zhang H, Gao Z, Qin J, Pan Y, Zhao J, Luo Y, Ma Z, Xiong Y, Ma J. A protective roasting strategy for preparation of stable mesoporous hollow CeO2 microspheres with enhanced catalytic activity for one-pot synthesis of imines from benzyl alcohols and anilines. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00024k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protective roasting strategy can be applied to prepare stable mh-CeO2 microspheres with enhanced catalytic activity and reusability for one-pot synthesis of imines.
Collapse
|
28
|
Ding H, Yang J, Ma S, Yigit N, Xu J, Rupprechter G, Wang J. Large Dimensional CeO2
Nanoflakes by Microwave-Assisted Synthesis: Lamellar Nano-Channels and Surface Oxygen Vacancies Promote Catalytic Activity. ChemCatChem 2018. [DOI: 10.1002/cctc.201800784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huihui Ding
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; LongTeng Road 333 Shanghai 201620 P. R. China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; LongTeng Road 333 Shanghai 201620 P. R. China
- Institute of Materials Chemistry; Technische Universität Wien; Getreidemarkt 9/BC/01 Vienna 1 060 Austria
| | - Shuyi Ma
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; LongTeng Road 333 Shanghai 201620 P. R. China
| | - Nevzat Yigit
- Institute of Materials Chemistry; Technische Universität Wien; Getreidemarkt 9/BC/01 Vienna 1 060 Austria
| | - Jingli Xu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; LongTeng Road 333 Shanghai 201620 P. R. China
| | - Günther Rupprechter
- Institute of Materials Chemistry; Technische Universität Wien; Getreidemarkt 9/BC/01 Vienna 1 060 Austria
| | - JinJie Wang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; LongTeng Road 333 Shanghai 201620 P. R. China
| |
Collapse
|
29
|
Bäumler C, Kempe R. The Direct Synthesis of Imines, Benzimidazoles and Quinoxalines from Nitroarenes and Carbonyl Compounds by Selective Nitroarene Hydrogenation Employing a Reusable Iron Catalyst. Chemistry 2018; 24:8989-8993. [DOI: 10.1002/chem.201801525] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Christoph Bäumler
- Anorganische Chemie II-Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Germany
| | - Rhett Kempe
- Anorganische Chemie II-Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Germany
| |
Collapse
|
30
|
Jin Y, Ke Q, Li D, Lei Z, Ling Q, Xu J, Cui P. Nickel Doped Aluminophosphate-5 as an Efficient Heterogeneous Catalyst for Imine Synthesis by Direct Condensation of Alcohols and Amines at Room Temperature. ChemistrySelect 2018. [DOI: 10.1002/slct.201800475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangxin Jin
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
- College of Chemistry and Materials Engineering; Wenzhou University; Zhejiang 325035 China
| | - Qingping Ke
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
- College of Chemistry and Materials Engineering; Wenzhou University; Zhejiang 325035 China
| | - Dandan Li
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
| | - Zhao Lei
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
| | - Qiang Ling
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
| | - Jin Xu
- College of Chemistry and Materials Engineering; Wenzhou University; Zhejiang 325035 China
| | - Ping Cui
- Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering; Anhui University of Technology; Ma'anshan 243002 China
| |
Collapse
|
31
|
Zhang X, Wang N, Geng L, Fu J, Hu H, Zhang D, Zhu B, Carozza J, Han H. Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol. J Colloid Interface Sci 2018; 512:844-852. [PMID: 29126073 DOI: 10.1016/j.jcis.2017.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Design and synthesis of low-cost catalysts with high activity and stability for hydrogenation reactions is an important research area of applied catalysis. In this work, we present a kind of ultrafine cobalt oxides encapsulated by N-doped carbon (donated as CoOx/CN) as efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) process. The CoOx/CN was fabricated through a pyrolysis strategy using an N-containing metal-organic framework (Co-MOF) as precursor followed by a fine thermal-treatment. With an optimized pyrolysis temperature of 500 °C, the CoOx species present as ultrafine particles highly dispersed in the obtained catalyst (CoOx/CN-500). CoOx/CN-500 exhibits excellent activity and stability in hydrogenation of 4-NP at ambient conditions. The activity is much higher than that of not only bulk cobalt oxides, but also carbon supported CoOx catalysts. It could be used for more than 8 times without obvious fading in activity. In addition, the concrete role of Co-MOF precursor and pyrolysis condition in the catalyst design was investigated in detail. The interaction between organic ligands and Co ions and the confinement of the crystalline structure of Co-MOF could restrain the aggregation of Co ions during pyrolysis and lead to high dispersion of ultrafine CoOx species. Meanwhile, the N-containing ligands could be transformed into doped N species (pyridinic and pyrrolic N), endowing the CoOx species with high electron density and promoting the formation of active sites for the hydrogenation reaction.
Collapse
Affiliation(s)
- Xiuling Zhang
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266000, PR China.
| | - Na Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266000, PR China
| | - Longlong Geng
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, PR China.
| | - Junna Fu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266000, PR China
| | - Hui Hu
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, PR China
| | - Dashuai Zhang
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, PR China
| | - Baoyong Zhu
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, PR China
| | - Jesse Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany 12222, USA
| | - Haixiang Han
- Department of Chemistry, University at Albany, State University of New York, Albany 12222, USA
| |
Collapse
|
32
|
Oxidative coupling of alcohols and amines to an imine over Mg-Al acid-base bifunctional oxide catalysts. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63006-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Construction of multivariate functionalized heterojunction and its application in selective oxidation of benzyl alcohol. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Xu Q, Yu G, Liu M, Peng C, Banks MK, Xu W, Wu R, Lu Y. Coumarin-surfactant modified polyoxometalate catalyzed cross dehydrogenative coupling of benzyl alcohol with the para-C–H of unprotected aniline. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a novel method for synthesizing para-aminobenzophenone and its derivatives (p-ABPs) using a coumarin-surfactant modified polyoxometalate as the catalyst.
Collapse
Affiliation(s)
- Qian Xu
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| | - Gang Yu
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| | - Min Liu
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| | - Chang Peng
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| | - M. Katherine Banks
- Zachry Department of Civil Engineering
- Texas A&M University
- College Station
- USA
| | - Weijian Xu
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| | - Ruoxi Wu
- Zachry Department of Civil Engineering
- Texas A&M University
- College Station
- USA
| | - Yanbing Lu
- College of Chemistry and Chemical Engineering
- Hunan University
- P.R. China
| |
Collapse
|
35
|
Zhang J, Yang J, Wang J, Ding H, Liu Q, Schubert U, Rui Y, Xu J. Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Chandra Mohan D, Sadhukha A, Maayan G. A metallopeptoid as an efficient bioinspired cooperative catalyst for the aerobic oxidative synthesis of imines. J Catal 2017. [DOI: 10.1016/j.jcat.2017.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Affiliation(s)
- Alessandro Trovarelli
- Dipartimento
Politecnico, Università di Udine, via del Cotonificio 108, 33100 Udine, Italy
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|