1
|
Kalyviotis K, Pantazis P. Primed conversion: The emerging player of precise and nontoxic photoconversion. J Microsc 2024; 296:154-161. [PMID: 37937409 DOI: 10.1111/jmi.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
In 2015, we reported primed conversion, a novel way to convert green-to-red photoconvertible fluorescent proteins, which emerges as a powerful tool for precision optical imaging. Primed conversion uses the intercept of blue and red-to-far-red light instead of traditional violet or near-UV light illumination which offers a series of advantages. Here, we review the fundamental principles and applications of primed conversion with a focus on its use in single-cell labelling and lineage tracing. We provide a historical perspective of lineage tracing techniques, thereby covering basic principles of fluorescence, photoconvertible fluorescent proteins, and eventually primed conversion. We then present the molecular requirements for primed conversion to take place and showcase how it can be used for dual-colour high-fidelity lineage tracing. Further, we discuss potential future developments of the primed conversion imaging toolkit that can benefit the study of both development and disease progression.
Collapse
|
2
|
Jimbo M, Otake M, Amano H, Yasumoto K, Watabe S, Okada D, Kumagai H. Characterization of recombinant photoconverting green fluorescent Akanes. J Biochem 2023; 175:25-34. [PMID: 37812399 DOI: 10.1093/jb/mvad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Akanes are fluorescent proteins that have several fluorescence maxima. In this report, Akane1 and Akane3 from Scleronephthya gracillima were selected, successfully overexpressed in Escherichia coli and purified by affinity chromatography. Fluorescence spectra of the recombinant Akanes matured in darkness, or ambient light were found to have several fluorescence peaks. SDS-PAGE analysis revealed that Akanes matured in ambient light have two fragments. MS/MS analysis of Akanes digested with trypsin showed that the cleavage site is the same as observed for the photoconvertible fluorescent protein Kaede. The differences between the calculated masses from the amino acid sequence of Akane1 and the measured masses of Akane1 fragments obtained under ambient light coincided with those of Kaede. In contrast, a mass difference between the measured N-terminal Akane3 fragment and the calculated mass indicated that Akane3 is modified in the N-terminal region. These results indicate that numerous peaks in the fluorescent spectra of Akanes partly arise from isoproteins of Akanes and photoconversion. Photoconversion of Akane1 caused a fluorescence change from green to red, which was also observed for Akane3; however, the fluorescent intensity decreased dramatically when compared with that of Akane3.
Collapse
Affiliation(s)
- Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Mayumi Otake
- School of Marine Biosciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Okada
- School of Medicine, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroshi Kumagai
- School of Allied Health Sciences, Kitasato University. 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
3
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
4
|
Black HH, Hanson JL, Roberts JE, Leslie SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung E, Lau CI, Whiteley AM. UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS. eLife 2023; 12:e79452. [PMID: 36951542 PMCID: PMC10076021 DOI: 10.7554/elife.79452] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10 (PEG10)' in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through the regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.
Collapse
Affiliation(s)
- Holly H Black
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado BoulderBoulderUnited States
| | - Julia E Roberts
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Shannon N Leslie
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Will Campodonico
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | | - G Aaron Holling
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Autumn M Matthews
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Elizabeth Ung
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Cristina I Lau
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | |
Collapse
|
5
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
6
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
7
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
8
|
Fare C, Yuan L, Cordon-Preciado V, Michels JJ, Bearpark MJ, Rich P, van Thor JJ. Radical-Triggered Reaction Mechanism of the Green-to-Red Photoconversion of EosFP. J Phys Chem B 2020; 124:7765-7778. [PMID: 32805110 DOI: 10.1021/acs.jpcb.0c04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction intermediates in the green-to-red photoconversion of the photochromic fluorescent protein EosFP have been observed using high-intensity continuous blue illumination. An intermediate was identified through light-induced accumulation that continues to convert the green form in subsequent darkness, putatively containing a tyrosyl radical, albeit with anomalously shifted features in both the electronic and FTIR spectra. Lowering the pH to 5.5 significantly delays the decay of this tyrosyl intermediate, which is accompanied by Stark-shifted features in the electronic spectra of reactants and products. Vibrational mode assignments for the high-frequency and fingerprint FTIR spectral regions of the reaction intermediates support a proposed sequence of events where the newly formed Cα═Cβ ethylenic bond precedes modifications on the His-62 imidazole ring and confirms a C═O(NH2) product group on Phe-61. We propose a reaction mechanism that involves tyrosyl generation via singlet excited-state-mediated oxidation which subsequently triggers the covalent reactions by oxidation of the green chromophore.
Collapse
Affiliation(s)
- Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London SW7 2AZ, United Kingdom
| | - Letong Yuan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jasper J Michels
- Division of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael J Bearpark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London SW7 2AZ, United Kingdom
| | - Peter Rich
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jasper J van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Welling M, Kalyviotis K, Pantazis P. Primed Track: Reliable Volumetric Single-cell Tracking and Lineage Tracing of Living Specimen with Dual-labeling Approaches. Bio Protoc 2020; 10:e3645. [PMID: 33659315 DOI: 10.21769/bioprotoc.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 04/28/2020] [Indexed: 11/02/2022] Open
Abstract
Mammalian embryonic development starts with a single fertilized zygote that develops into a blastocyst embryo consisting of three cell types that evolve into either embryonic or extra-embryonic tissues. Lineage tracing of these cells can provide important information about the molecular and cellular dynamics contributing to fate allocation during early development. While global labeling techniques allow for visualization of all cells at the same time, lineage tracing of cells over several divisions can become complicated due to embryo movement and rotation as well as increasing cell densities. Here, we use green-to-red photoconvertible proteins for both global and sparse labeling of cells of interest in the developing murine embryo. We use primed conversion to achieve precise photoconversion of single nuclei in 4-cell stage embryos followed by volumetric live imaging to capture development up to the blastocyst stage. We developed an image analysis pipeline, called primed Track, that uses the dual labeling strategy for both straightforward segmentation and registration of all cells in the embryo as well as correction of rotational and spatial drift. Together, this strategy allows for reliable and fast tracking and lineage tracing of individual cells, even over increased imaging time intervals that result in a major reduction in data volume, all essential conditions for volumetric long-term imaging techniques.
Collapse
Affiliation(s)
- Maaike Welling
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Periklis Pantazis
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Guo J, Yang Z. Measuring Exocytosis Rate in Arabidopsis Pollen Tubes Using Corrected Fluorescence Recovery After Photoconversion (cFRAPc) Technique. Methods Mol Biol 2020; 2160:293-306. [PMID: 32529445 DOI: 10.1007/978-1-0716-0672-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exocytosis is a fundamental process essential for many cellular functions by targeting signal peptides, proteins, and cell wall components to the plasma membrane (PM) or extracellular matrix. Conventional methods, such as FRAP, often underestimate the exocytosis rate of a specific molecule, because retrieval of the molecules from the PM by endocytosis can impact the measurement. To overcome this issue, we have previously established a novel method, corrected fluorescence recovery after photoconversion (cFRAPc), which allows us to accurately measure the exocytosis rate by monitoring both exocytosis-dependent and exocytosis-independent events. In this chapter, we provide detailed procedures for the cFRAPc method to measure the exocytosis rate of Arabidopsis receptor-like kinase PRK1 in pollen tubes. This method should be widely applicable to various cell types.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Novel Phototransformable Fluorescent Protein SAASoti with Unique Photochemical Properties. Int J Mol Sci 2019; 20:ijms20143399. [PMID: 31373280 PMCID: PMC6678895 DOI: 10.3390/ijms20143399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
SAASoti is a unique fluorescent protein (FP) that combines properties of green-to-red photoconversion and reversible photoswitching (in its green state), without any amino acid substitutions in the wild type gene. In the present work, we investigated its ability to photoswitch between fluorescent red (‘on’) and dark (‘off’) states. Surprisingly, generated by 400 nm exposure, the red form of SAASoti (R1) does not exhibit any reversible photoswitching behavior under 550 nm illumination, while a combination of prior 470 nm and subsequent 400 nm irradiation led to the appearance of another—R2—form that can be partially photoswitched (550 nm) to the dark state, with a very fast recovery time. The phenomenon might be explained by chemical modification in the chromophore microenvironment during prior 470 nm exposure, and the resulting R2 SAASoti differs chemically from the R1 form. The suggestion is supported by the mass spectrometry analysis of the tryptic peptides before and after 470 nm light exposure, that revealed Met164 oxidation, as proceeds in another dual phototransformable FP, IrisFP.
Collapse
|
12
|
Mishin AS, Lukyanov KA. Live-Cell Super-resolution Fluorescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S19-S31. [PMID: 31213193 DOI: 10.1134/s0006297919140025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Super-resolution fluorescence microscopy (nanoscopy) enables imaging with a spatial resolution much higher than the diffraction limit of optical microscopy. However, the methods of fluorescence nanoscopy are still poorly suitable for studying living cells. In this review, we describe some of methods for nanoscopy and specific fluorescent labeling aimed to decrease the damaging effects of light illumination on live samples.
Collapse
Affiliation(s)
- A S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
13
|
The Photoconvertible Fluorescent Protein Dendra2 Tag as a Tool to Investigate Intracellular Protein Dynamics. Methods Mol Biol 2019; 1992:201-214. [PMID: 31148040 DOI: 10.1007/978-1-4939-9469-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fluorescence proteins changing spectral properties after exposure to light with a specific wavelength have recently become outstanding aids in the study of intracellular protein dynamics. Herein we show using Arabidopsis SYNAPTOTAGMIN 1 as a model protein that the Dendra2 green to red photoconvertible protein tag in combination with confocal scanning laser microscopy is a useful tool to study membrane protein intracellular dynamics.
Collapse
|
14
|
Mohr MA, Pantazis P. Primed Conversion: The New Kid on the Block for Photoconversion. Chemistry 2018; 24:8268-8274. [PMID: 29430743 DOI: 10.1002/chem.201705651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/07/2022]
Abstract
In 2015, a novel way to convert photoconvertible fluorescent proteins was reported that uses the intercept of blue and far-red light instead of traditional violet or near-UV light illumination. This Minireview describes and contrasts this distinct two-step mechanism termed primed conversion with traditional photoconversion. We provide a comprehensive overview of what is known to date about primed conversion and focus on the molecular requirements for it to take place. We provide examples of its application to axially confined photoconversion in complex tissues as well as super-resolution microscopy. Further, we describe why and when it is useful, including its advantages and disadvantages, and give an insight into potential future development in the field.
Collapse
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| |
Collapse
|
15
|
Taniguchi A, Kimura Y, Mori I, Nonaka S, Higashijima S. Axially-confined in vivo single-cell labeling by primed conversion using blue and red lasers with conventional confocal microscopes. Dev Growth Differ 2017; 59:741-748. [PMID: 29238969 PMCID: PMC11520947 DOI: 10.1111/dgd.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins have been found to undergo efficient photoconversion by a new method termed primed conversion that uses dual wave-length illumination with blue and red/near-infrared light. By modifying a confocal laser-scanning microscope (CLSM) such that two laser beams only meet at the focal plane, confined photoconversion at the axial dimension has been achieved. The necessity of this custom modification to the CLSM, however, has precluded the wide-spread use of this method. Here, we investigated whether spatially-restricted primed conversion could be achieved with CLSM without any hardware modification. We found that the primed conversion of Dendra2 using a conventional CLSM with two visible lasers (473 nm and 635 nm) and a high NA objective lens (NA, 1.30) resulted in dramatic restriction of photoconversion volume: half-width half-maximum for the axial dimension was below 5 μm, which is comparable to the outcome of the original method that used the microscope modification. As a proof of this method's effectiveness, we used this technique in living zebrafish embryos and succeeded in revealing the complex anatomy of individual neurons packed between neighboring cells. Because unmodified CLSMs are widely available, this method can be widely applicable for labeling cells with single-cell resolution.
Collapse
Affiliation(s)
- Atsushi Taniguchi
- National Institutes of Natural SciencesNational Institute for Basic BiologyOkazaki444‐8585Japan
| | - Yukiko Kimura
- National Institutes of Natural SciencesOkazaki Institute for Integrative BioscienceNational Institute for Basic BiologyOkazaki444‐8787Japan
| | - Ikue Mori
- Neuroscience Institute of the Graduate School of ScienceNagoya UniversityNagoya464‐8602Japan
| | - Shigenori Nonaka
- National Institutes of Natural SciencesNational Institute for Basic BiologyOkazaki444‐8585Japan
| | - Shin‐ichi Higashijima
- National Institutes of Natural SciencesOkazaki Institute for Integrative BioscienceNational Institute for Basic BiologyOkazaki444‐8787Japan
| |
Collapse
|
16
|
Pakhomov AA, Martynov VI, Orsa AN, Bondarenko AA, Chertkova RV, Lukyanov KA, Petrenko AG, Deyev IE. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochem Biophys Res Commun 2017; 493:1518-1521. [PMID: 28986251 DOI: 10.1016/j.bbrc.2017.09.170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells.
Collapse
Affiliation(s)
- Alexey A Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Vladimir I Martynov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander N Orsa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alena A Bondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rita V Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander G Petrenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Igor E Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
17
|
Turkowyd B, Balinovic A, Virant D, Carnero HGG, Caldana F, Endesfelder M, Bourgeois D, Endesfelder U. A General Mechanism of Photoconversion of Green-to-Red Fluorescent Proteins Based on Blue and Infrared Light Reduces Phototoxicity in Live-Cell Single-Molecule Imaging. Angew Chem Int Ed Engl 2017; 56:11634-11639. [PMID: 28574633 DOI: 10.1002/anie.201702870] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Indexed: 11/09/2022]
Abstract
Photoconversion of fluorescent proteins by blue and complementary near-infrared light, termed primed conversion (PC), is a mechanism recently discovered for Dendra2. We demonstrate that controlling the conformation of arginine at residue 66 by threonine at residue 69 of fluorescent proteins from Anthozoan families (Dendra2, mMaple, Eos, mKikGR, pcDronpa protein families) represents a general route to facilitate PC. Mutations of alanine 159 or serine 173, which are known to influence chromophore flexibility and allow for reversible photoswitching, prevent PC. In addition, we report enhanced photoconversion for pcDronpa variants with asparagine 116. We demonstrate live-cell single-molecule imaging with reduced phototoxicity using PC and record trajectories of RNA polymerase in Escherichia coli cells.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - David Virant
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Haruko G Gölz Carnero
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Fabienne Caldana
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Marc Endesfelder
- Institut für Assyriologie, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Dominique Bourgeois
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044, Grenoble, France
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| |
Collapse
|
18
|
Turkowyd B, Balinovic A, Virant D, Gölz Carnero HG, Caldana F, Endesfelder M, Bourgeois D, Endesfelder U. Ein allgemeiner Mechanismus der Photokonvertierung von grün-zu-rot fluoreszierenden Proteinen unter blauem und infrarotem Licht reduziert Phototoxität in der Einzelmolekülmikroskopie von lebenden Zellen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bartosz Turkowyd
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Alexander Balinovic
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - David Virant
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Haruko G. Gölz Carnero
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Fabienne Caldana
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Marc Endesfelder
- Institut für Assyriologie und Hethitologie; Ludwig-Maximilians-Universität München; Geschwister-Scholl-Platz 1 80539 München Deutschland
| | - Dominique Bourgeois
- Institut de Biologie Structurale, CNRS; Université Grenoble Alpes, CEA, IBS; 38044 Grenoble Frankreich
| | - Ulrike Endesfelder
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| |
Collapse
|
19
|
Virant D, Turkowyd B, Balinovic A, Endesfelder U. Combining Primed Photoconversion and UV-Photoactivation for Aberration-Free, Live-Cell Compliant Multi-Color Single-Molecule Localization Microscopy Imaging. Int J Mol Sci 2017; 18:ijms18071524. [PMID: 28708098 PMCID: PMC5536014 DOI: 10.3390/ijms18071524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Super-resolution fluorescence microscopy plays a major role in revealing the organization and dynamics of living cells. Nevertheless, single-molecule localization microscopy imaging of multiple targets is still limited by the availability of suitable fluorophore combinations. Here, we introduce a novel imaging strategy which combines primed photoconversion (PC) and UV-photoactivation for imaging different molecular species tagged by suitable fluorescent protein combinations. In this approach, the fluorescent proteins can be specifically photoactivated/-converted by different light wavelengths using PC and UV-activation modes but emit fluorescence in the same spectral emission channel. We demonstrate that this aberration-free, live-cell compatible imaging method can be applied to various targets in bacteria, yeast and mammalian cells and can be advantageously combined with correlative imaging schemes.
Collapse
Affiliation(s)
- David Virant
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany.
| | - Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany.
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany.
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany.
| |
Collapse
|
20
|
Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P. Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angew Chem Int Ed Engl 2017; 56:11628-11633. [DOI: 10.1002/anie.201706121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
- Howard Hughes Medical Institute; Janelia Research Campus; Ashburn VA 20147 USA
| | - Andrei Yu. Kobitski
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Lluc Rullan Sabater
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| | - Karin Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | | | | | - Gerd Ulrich Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Department of Physics; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| |
Collapse
|
21
|
Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P. Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
- Howard Hughes Medical Institute; Janelia Research Campus; Ashburn VA 20147 USA
| | - Andrei Yu. Kobitski
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Lluc Rullan Sabater
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| | - Karin Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | | | | | - Gerd Ulrich Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Department of Physics; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| |
Collapse
|
22
|
Chow RWY, Vermot J. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Res 2017; 6. [PMID: 28413613 PMCID: PMC5389412 DOI: 10.12688/f1000research.10617.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
Collapse
Affiliation(s)
- Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|