1
|
Zhang K, Tran C, Yan J, Rodríguez Caro JF, Bignon J, Alami M, Lamaa D, Brachet E, Hamze A. 1,1'-Diarylethylene as a Key Additive for the Visible Light Synthesis of Bioactive Dihydrobenzo[ a]phenanthridine Compounds. J Org Chem 2024; 89:15117-15136. [PMID: 39350585 DOI: 10.1021/acs.joc.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study introduces a straightforward synthetic approach for generating 7,8-dihydrobenzo[a]phenanthridine analogs through visible-light-induced cyclization, showing promise as antitumor agents. Unexpectedly, the incorporation of 1,1'-diarylethylene as an additive significantly boosts yield. Through mechanistic investigations, we uncover its crucial role as a trap for the methyl radical formed after the N-O bond cleavage of O-acetyl oxime, promoting intramolecular cyclization of a nitrogen-centered imine radical. These insights into the mechanism pave the way for transformative advancements in this synthesis strategy.
Collapse
Affiliation(s)
- Kena Zhang
- Université Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Jun Yan
- Université Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Juan Francisco Rodríguez Caro
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (SINTESTER), Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 2, La Laguna 38206, Spain
| | - Jérôme Bignon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Diana Lamaa
- School of Pharmacy of Paris, Université Paris Cité, UMR CNRS 8038 CiTCoM, Team P.N.A.S., Paris 75006, France
| | - Etienne Brachet
- School of Pharmacy of Paris, Université Paris Cité, UMR CNRS 8038 CiTCoM, Team P.N.A.S., Paris 75006, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| |
Collapse
|
2
|
Salerno S, Barresi E, Baglini E, Poggetti V, Da Settimo F, Taliani S. Target-Based Anticancer Indole Derivatives for the Development of Anti-Glioblastoma Agents. Molecules 2023; 28:molecules28062587. [PMID: 36985576 PMCID: PMC10056347 DOI: 10.3390/molecules28062587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and frequent primary brain tumor, with a poor prognosis and the highest mortality rate. Currently, GBM therapy consists of surgical resection of the tumor, radiotherapy, and adjuvant chemotherapy with temozolomide. Consistently, there are poor treatment options and only modest anticancer efficacy is achieved; therefore, there is still a need for the development of new effective therapies for GBM. Indole is considered one of the most privileged scaffolds in heterocyclic chemistry, so it may serve as an effective probe for the development of new drug candidates against challenging diseases, including GBM. This review analyzes the therapeutic benefit and clinical development of novel indole-based derivatives investigated as promising anti-GBM agents. The existing indole-based compounds which are in the pre-clinical and clinical stages of development against GBM are reported, with particular reference to the most recent advances between 2013 and 2022. The main mechanisms of action underlying their anti-GBM efficacy, such as protein kinase, tubulin and p53 pathway inhibition, are also discussed. The final goal is to pave the way for medicinal chemists in the future design and development of novel effective indole-based anti-GBM agents.
Collapse
|
3
|
Zheng Y, Duan P, Zhou Y, Li C, Zhou D, Wang Y, Chen L, Zhu Z, Li X, Bai J, Qu K, Gao T, Shi J, Liu J, Zhang Q, Chen Z, Hong W. Fano Resonance in Single‐Molecule Junctions. Angew Chem Int Ed Engl 2022; 61:e202210097. [DOI: 10.1002/anie.202210097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Chuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dahai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yaping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Li‐Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Zhiyu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Kai Qu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Qian‐Chong Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Zhong‐Ning Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
4
|
Shi L, Yang S, Chang J, Zhang Y, Liu W, Zeng J, Meng J, Zhang R, Wang C, Xing D. Design, synthesis and biological evaluation of 9-aryl-5H-pyrido[4,3-b]indole derivatives as potential tubulin polymerization inhibitors. Front Chem 2022; 10:1004835. [PMID: 36186601 PMCID: PMC9520531 DOI: 10.3389/fchem.2022.1004835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
A series of new 9-aryl-5H-pyrido[4,3-b]indole derivatives as tubulin polymerization inhibitors were designed, synthesized, and evaluated for antitumor activity. All newly prepared compounds were tested for their anti-proliferative activity in vitro against three different cancer cells (SGC-7901, HeLa, and MCF-7). Among the designed compounds, compound 7k displayed the strongest anti-proliferative activity against HeLa cells with IC50 values of 8.7 ± 1.3 μM. In addition, 7k could inhibit the polymerization of tubulin and disrupt the microtubule network of cells. Further mechanism studies revealed that 7k arrested cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner. Molecular docking analysis confirmed that 7k may bind to colchicine binding sites on microtubules. Our study aims to provide a new strategy for the development of antitumor drugs targeting tubulin.
Collapse
Affiliation(s)
- Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
5
|
Zheng Y, Duan P, Zhou Y, Li C, Zhou D, Wang Y, Chen LC, Zhu Z, Li X, Bai J, Qu K, Gao T, Shi J, Liu J, Zhang QC, Chen ZN, Hong W. Fano Resonance in Single‐molecule Junctions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zheng
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Ping Duan
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Yu Zhou
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Dahai Zhou
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Yaping Wang
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Li-Chuan Chen
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Zhiyu Zhu
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Xiaohui Li
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Jie Bai
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Kai Qu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Tengyang Gao
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Jia Shi
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Junyang Liu
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Qian-Chong Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Zhong-Ning Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Wenjing Hong
- Xiamen University College of Chemistry and Chemical Engineering Siming south road 422 3012 Xiamen CHINA
| |
Collapse
|
6
|
Hauguel C, Tran C, Provot O, Bignon J, gandon V, HAMZE A. Water‐Facilitated Nitromethane‐Mediated Cyclization of 2‐(Phenylvinyl)benzhydrols: Access to 1,3‐Diphenyl‐1H‐indenes with Antitumor Activity. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Duan P, Wang Y, Chen L, Qu K, Liu J, Zhang QC, Chen ZN, Hong W. Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200361. [PMID: 35481610 DOI: 10.1002/smll.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Investigating the correlations of electron transport between multiple channels shows vital promises for the design of molecule-scale circuits with logic operations. To control the electron transport through multiple channels, the modulation of electronegativity shows an effective frontier orbit control method with high universality to explore the interactions between transport channels. Here, two series of compounds with a single nitrogenous conductive channel (Sg) and dual-channels (Db) are designed to explore the influence of electronegativity on electron tunneling transport. Single-molecule conductance measured via the scanning tunneling microscope break junction technique (STM-BJ) reveals that the conductance of Db series is significantly suppressed as the electronegativity of nitrogen becomes negative, while the suppression on Sg is less obvious. Theoretical calculations confirm that the effect of electronegativity extends to a dispersive range of molecular frameworks owing to the delocalized orbital distribution from the dual-channel structure, resulting in a more significant conductance suppression effect than that on the single-channel. This study provides the experimental and theoretical potentials of electronegativity gating for molecular circuits.
Collapse
Affiliation(s)
- Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yaping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Kai Qu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018‒2021). Acta Pharm Sin B 2022; 12:3006-3027. [PMID: 35865090 PMCID: PMC9293743 DOI: 10.1016/j.apsb.2022.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018–2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.
Collapse
|
9
|
Thomas GT, Ronda K, McIndoe JS. A mechanistic investigation of the Pd-catalyzed cross-coupling between N-tosylhydrazones and aryl halides. Dalton Trans 2021; 50:15533-15537. [PMID: 34647949 DOI: 10.1039/d1dt03161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cross-coupling of N-tosylhydrazones and aryl halides forms carbon-carbon bonds, producing 1,1-disubstituted alkenes. Though it has proven extremely useful in several fields of chemistry, its mechanism remains experimentally unexplored. Combining benchtop NMR and real-time mass spectrometry afforded the ability to monitor the catalytic intermediates as well as the rate of product formation.
Collapse
|
10
|
A palladium-catalyzed Barluenga cross-coupling - reductive cyclization sequence to substituted indoles. Tetrahedron 2021; 94. [PMID: 34483377 DOI: 10.1016/j.tet.2021.132331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short and flexible synthesis of substituted indoles employing two palladium-catalyzed reactions, a Barluenga cross-coupling of p-tosylhydrazones with 2-nitroarylhalides followed by a palladium-catalyzed, carbon monoxide-mediated reductive cyclization has been developed. A one-pot, two-step methodology was further developed, eliminating isolation and purification of the cross-coupling product. This was accomplished by utilizing the initially added 0.025 equivalents of bis(triphenylphosphine)palladium dichloride, thus serving a dual role in the cross-coupling and the reductive cyclization. It was found that addition of 1,3-bis(diphenylphosphino)propane and carbon monoxide after completion of the Barluenga reaction afforded, in most cases, significantly better overall yields.
Collapse
|
11
|
Anticancer properties of indole derivatives as IsoCombretastatin A-4 analogues. Eur J Med Chem 2021; 223:113656. [PMID: 34171660 DOI: 10.1016/j.ejmech.2021.113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
In this study, a variety of original ligands related to Combretastatin A-4 and isoCombretastatin A-4, able to inhibit the tubulin polymerization into microtubules, was designed, synthesized, and evaluated. Our lead compound 15d having a quinazoline as A-ring and a 2-substituted indole as B-ring separated by a N-methyl linker displayed a remarkable sub-nanomolar level of cytotoxicity (IC50 < 1 nM) against 9 human cancer cell lines.
Collapse
|
12
|
Wu CJ, Wu JQ, Hu Y, Pu S, Lin Y, Zeng Z, Hu J, Chen WH. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors. Eur J Med Chem 2021; 223:113629. [PMID: 34175541 DOI: 10.1016/j.ejmech.2021.113629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
A series of indole-based [1,2,4]triazolo [4,3-a]pyridine derivatives was designed and synthesized as novel microtubulin polymerization inhibitors by using a conformational restriction strategy. These compounds exhibited moderate to potent anti-proliferative activities against a panel of cancer cell lines (HeLa, A549, MCF-7 and HCT116). Among them, compound 12d featuring a N-methyl-5-indolyl substituent at the C-6 position of the [1,2,4]triazolo [4,3-a]pyridine core exhibited the highest antiproliferative activity with the IC50 values ranging from 15 to 69 nM, and remarkable inhibitory effect on tubulin polymerization with an IC50 value of 1.64 μM. Mechanistic studies revealed that compound 12d induced cellular apoptosis and cell cycle arrest at the G2/M phase in a dose-dependent fashion. Moreover, compound 12d significantly suppressed wound closure and disturbed microtubule networks.
Collapse
Affiliation(s)
- Cheng-Jun Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yuying Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Zimai Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
13
|
Radolko J, Ehlers P, Langer P. Recent Advances in Transition‐Metal‐Catalyzed Reactions of N‐Tosylhydrazones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan Radolko
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
| | - Peter Ehlers
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
14
|
Pecnard S, Provot O, Levaique H, Bignon J, Askenatzis L, Saller F, Borgel D, Michallet S, Laisne MC, Lafanechère L, Alami M, Hamze A. Cyclic bridged analogs of isoCA-4: Design, synthesis and biological evaluation. Eur J Med Chem 2020; 209:112873. [PMID: 33038796 DOI: 10.1016/j.ejmech.2020.112873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
In this work, a series of cyclic bridged analogs of isocombretastatin A-4 (isoCA-4) with phenyl or pyridine linkers were designed and synthesized. The synthesis of the desired analogs was performed by the formation of nitro-vinyl intermediates, followed by a Cadogan cyclization. Structure activity relationship (SAR) study demonstrates the critical role of the combination of quinaldine as ring A, pyridine as the linker, and indole as ring B in the same molecule, for the cytotoxic activity. Among all tested compounds, compound 42 showed the highest antiproliferative activity against a panel of cancer cell lines with average IC50 values of 5.6 nM. Also, compound 42 showed high antiproliferative activity against the MDR1-overexpressing K562R cell line; thus, it was 1.5- and 12-fold more active than the reference compounds, isoCA-4 and CA-4, respectively. Moreover, 42 displayed a strong antiproliferative activity against the colon-carcinoma cells (HT-29), which are resistant to combretastatin A-4 and isoCA-4, and it was found to be 8000-fold more active than natural CA-4. Compound 42 also effectively inhibited tubulin polymerization both in vitro and in cells, and induced cell cycle arrest in G2/M phase. Next, we demonstrated that compound 42 dose-dependently caused caspase-induced apoptosis of K562 cells through mitochondrial dysfunction. Finally, we evaluated the effect of compound 42 in human no cancer cells compared to the reference compound. We demonstrated that 42 was 73 times less cytotoxic than isoCA-4 in quiescent peripheral blood lymphocytes (PBLs). In summary, these results suggest that compound 42 represents a promising tubulin inhibitor worthy of further investigation.
Collapse
Affiliation(s)
- Shannon Pecnard
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Hélène Levaique
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Laurie Askenatzis
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Francois Saller
- INSERM, UMR-S1176, University Paris-Saclay, F-94276, Le Kremlin-Bicetre, France
| | - Delphine Borgel
- INSERM, UMR-S1176, University Paris-Saclay, F-94276, Le Kremlin-Bicetre, France
| | - Sophie Michallet
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Marie-Catherine Laisne
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
15
|
Xu C, Xie W, Xu J. Metal-free and regiospecific synthesis of 3-arylindoles. Org Biomol Chem 2020; 18:2661-2671. [PMID: 32196059 DOI: 10.1039/d0ob00317d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A convenient, metal-free, and organic acid-base promoted synthetic method to prepare 3-arylindoles from 3-aryloxirane-2-carbonitriles and arylhydrazine hydrochlorides has been developed. In the reaction, the organic acid catalyzes a tandem nucleophilic ring-opening reaction of aryloxiranecarbonitriles and arylhydrazine hydrochlorides and Fischer indolization. The organic base triethylamine plays a crucial role in the final elimination step in the Fischer indole synthesis, affording 3-arylindoles regiospecifically. The reaction features advantages of microwave acceleration, non-metal participation, short reaction time, organic acid-base co-catalysis, and broad substrate scope.
Collapse
Affiliation(s)
- Chuangchuang Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenlai Xie
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
16
|
Hamze A, Alami M, Provot O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur J Med Chem 2020; 190:112110. [PMID: 32061961 DOI: 10.1016/j.ejmech.2020.112110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Combretastatin A-4 (CA-4) is a natural anti-cancer agent isolated in 1989 from the African willow tree, Combretum caffrum. Due to its chemical simplicity, this (Z)-stilbene has been the subject of many structural modifications mainly to improve its chemical and metabolic stability. Beside a large number of synthetic analogues, isoCombretastatin A-4 (isoCA-4), has proved to be a solution of choice since this non-natural isomer of CA-4 is stable, easier to synthesize and has equivalent antitumor properties as CA-4. In this review, we will present the structure-activity relationships (SARs) around isoCA-4 since its discovery in 2007. In a first part, we will describe some alternatives to replace the phenol B-ring of isoCA-4, then we will focus on the variations made on the 1,1-ethylene double bond and then, we will evocate very recent exiting results concerning the possible replacements of the 3,4,5-trimethoxyphenyl A-ring of isoCA-4 by suitable heterocycles.
Collapse
Affiliation(s)
- Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
17
|
Wang C, Tan J, Zhang X. Structure–reactivity relationship of probes based on the H 2S-mediated reductive cleavage of the CC bond. NEW J CHEM 2020. [DOI: 10.1039/d0nj02307h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structure–reactivity relationship of H2S-mediated reductive cleavage of CC bond was studied and utilized to develop probes for detecting H2S.
Collapse
Affiliation(s)
- Chunfei Wang
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| | - Jingyun Tan
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| |
Collapse
|
18
|
Zhang K, El Bouakher A, Levaique H, Bignon J, Retailleau P, Alami M, Hamze A. Pyrrolo-imidazo[1,2-a]pyridine Scaffolds through a Sequential Coupling of N-Tosylhydrazones with Imidazopyridines and Reductive Cadogan Annulation, Synthetic Scope, and Application. J Org Chem 2019; 84:13807-13823. [DOI: 10.1021/acs.joc.9b02018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kena Zhang
- BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Abderrahman El Bouakher
- BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Helene Levaique
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Avenue de la Terrasse, F-91198 Gif sur Yvette, France
| | - Jerome Bignon
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Avenue de la Terrasse, F-91198 Gif sur Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Mouad Alami
- BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Abdallah Hamze
- BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
19
|
Huang K, Lu P, Wang Y. BF3-promoted reactions between aryl aldehydes and 3-diazoindolin-2-imines: Access to 2-amino-3-arylindoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liu H, Guo C, Guo S, Wang L, Shi D. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells. Molecules 2019; 24:molecules24020375. [PMID: 30669672 PMCID: PMC6359167 DOI: 10.3390/molecules24020375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
A turn-on florescent probe (probe-KCP) was developed for highly selective detection of thiophenols based on a donor-excited photo-induced electron transfer mechanism. Herein, the synthesis of the probe, a chalcone derivative, through a simple straightforward combination of a carbazole-chalcone fluorophore with a 2,4-dinitrophenyl functional group. In a kinetic study of the probe-KCP for thiophenols, the probe displayed a short response time (~30 min) and significant fluorescence enhancement. In selection and competition experiments, the probe-KCP exhibited excellent selectivity for thiophenols over glutathione (GSH), cysteine (Cys), sodium hydrosulfide (NaSH), and ethanethiol (C2H5SH) in addition to common anions and metal ions. Using the designed probe, we successfully monitored and quantified thiophenols, which are highly toxic. This turn-on fluorescence probe features a remarkably large Stokes shift (130 nm) and a short response time (30 min), and it is highly selective and sensitive (~160-fold) in the detection of thiophenols, with marked fluorescence in the presence of thiophenols. probe-KCP responds to thiophenols with a good range of linearity (0–15 μM) and a detection limit of 28 nM (R2 = 0.9946) over other tested species mentioned including aliphatic thiols, thiophenol analogues, common anions, and metal ions. The potential applications of this carbazole-chalcone fluorescent probe was successfully used to determine of thiophenols in real water samples and living cells with good performance and low cytotoxicity. Therefore, this probe has great potential application in environment and biological samples.
Collapse
Affiliation(s)
- Hua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Naret T, Khelifi I, Provot O, Bignon J, Levaique H, Dubois J, Souce M, Kasselouri A, Deroussent A, Paci A, Varela PF, Gigant B, Alami M, Hamze A. 1,1-Diheterocyclic Ethylenes Derived from Quinaldine and Carbazole as New Tubulin-Polymerization Inhibitors: Synthesis, Metabolism, and Biological Evaluation. J Med Chem 2018; 62:1902-1916. [PMID: 30525602 DOI: 10.1021/acs.jmedchem.8b01386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis and metabolic and biological evaluation of a series of 17 novel heterocyclic derivatives of isocombretastatin-A4 (iso-CA-4) and their structure-activity relationships. Among these derivatives, the most active compound, 4f, inhibited the growth of a panel of seven cancer cell lines with an IC50 in the low nanomolar range. In addition, 4f showed interesting activity against CA-4-resistant colon-carcinoma cells and multidrug-resistant leukemia cells. It also induced G2/M cell-cycle arrest. Structural data indicated binding of 4f to the colchicine site of tubulin, likely preventing the curved-to-straight tubulin structural changes that occur during microtubule assembly. Also, 4f disrupted the blood-vessel-like assembly formed by human umbilical-vein endothelial cells in vitro, suggesting its function as a vascular-disrupting agent. An in vitro metabolism study of 4f showed its high human-microsomal stability in comparison with that of iso-CA-4. The physicochemical properties of 4f may be conducive to CNS permeability, suggesting that this compound may be a possible candidate for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Timothée Naret
- BioCIS, Université Paris-Sud, CNRS, Équipe Labellisée Ligue Contre le Cancer , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Ilhem Khelifi
- BioCIS, Université Paris-Sud, CNRS, Équipe Labellisée Ligue Contre le Cancer , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Olivier Provot
- BioCIS, Université Paris-Sud, CNRS, Équipe Labellisée Ligue Contre le Cancer , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Jérôme Bignon
- CIBI Plateform , Institut de Chimie des Substances Naturelles, UPR 2301, CNRS , F-91198 Gif sur Yvette , France
| | - Hélène Levaique
- CIBI Plateform , Institut de Chimie des Substances Naturelles, UPR 2301, CNRS , F-91198 Gif sur Yvette , France
| | - Joelle Dubois
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS , F-91198 Gif sur Yvette , France
| | - Martin Souce
- Lip(Sys)2, Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Université Paris-Sud , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Athena Kasselouri
- Lip(Sys)2, Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Université Paris-Sud , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Alain Deroussent
- UMR 8203, Laboratoire de Vectorologie et Thérapeutique Anticancéreuses, CNRS, Université Paris-Sud , Université Paris-Saclay, Gustave Roussy , F-94805 Villejuif , France
| | - Angélo Paci
- UMR 8203, Laboratoire de Vectorologie et Thérapeutique Anticancéreuses, CNRS, Université Paris-Sud , Université Paris-Saclay, Gustave Roussy , F-94805 Villejuif , France.,Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris , Université Paris-Sud , F-94805 Villejuif , France
| | - Paloma F Varela
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Université Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette , France
| | - Benoît Gigant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Université Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette , France
| | - Mouad Alami
- BioCIS, Université Paris-Sud, CNRS, Équipe Labellisée Ligue Contre le Cancer , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| | - Abdallah Hamze
- BioCIS, Université Paris-Sud, CNRS, Équipe Labellisée Ligue Contre le Cancer , Université Paris-Saclay , F-92290 Châtenay-Malabry , France
| |
Collapse
|
22
|
Bzeih T, Zhang K, Khalaf A, Hachem A, Alami M, Hamze A. One-Pot Reaction between N-Tosylhydrazones and 2-Nitrobenzyl Bromide: Route to NH-Free C2-Arylindoles. J Org Chem 2018; 84:228-238. [DOI: 10.1021/acs.joc.8b02623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tourin Bzeih
- LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université Paris-Sud, CNRS, BioCIS−UMR 8076, rue J.-B. Clément, Châtenay-Malabry F−92296, France
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (1), and PRASE-EDST, Lebanese University, Hadath, Lebanon
| | - Kena Zhang
- LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université Paris-Sud, CNRS, BioCIS−UMR 8076, rue J.-B. Clément, Châtenay-Malabry F−92296, France
| | - Ali Khalaf
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (1), and PRASE-EDST, Lebanese University, Hadath, Lebanon
| | - Ali Hachem
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (1), and PRASE-EDST, Lebanese University, Hadath, Lebanon
| | - Mouad Alami
- LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université Paris-Sud, CNRS, BioCIS−UMR 8076, rue J.-B. Clément, Châtenay-Malabry F−92296, France
| | - Abdallah Hamze
- LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université Paris-Sud, CNRS, BioCIS−UMR 8076, rue J.-B. Clément, Châtenay-Malabry F−92296, France
| |
Collapse
|
23
|
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Natural Sciences; Hanyang University; Seoul 04763 Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Natural Sciences; Hanyang University; Seoul 04763 Korea
| |
Collapse
|
24
|
Kaur M, Kumar R. C‐N and N‐N bond formation via Reductive Cyclization: Progress in Cadogan /Cadogan‐Sundberg Reactionǂ. ChemistrySelect 2018. [DOI: 10.1002/slct.201800779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| | - Raj Kumar
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| |
Collapse
|
25
|
Gattu R, Bhattacharjee S, Mahato K, Khan AT. Electronic effect of substituents on anilines favors 1,4-addition totrans-β-nitrostyrenes: access toN-substituted 3-arylindoles and 3-arylindoles. Org Biomol Chem 2018; 16:3760-3770. [DOI: 10.1039/c8ob00736e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and an efficient method for the regioselective synthesis ofN-alkyl/aryl/H 3-arylindole derivatives fromN-substituted anilines andtrans-β-nitrostyrenes has been described using 10 mol% of bismuth(iii) triflate as a catalyst in acetonitrile at 80 °C.
Collapse
Affiliation(s)
- Radhakrishna Gattu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | | | - Karuna Mahato
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| |
Collapse
|
26
|
Naret T, Bzeih T, Retailleau P, Alami M, Hamze A. One-Pot Selective Functionalization of Nitrogen-Containing Heterocycles with N
-tosylhydrazones and Amines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Timothée Naret
- BioCIS; Equipe Labellisée Ligue Contre Le Cancer; Univ. Paris-Sud, CNRS; University Paris-Saclay Châtenay-Malabry 92290 France
| | - Tourin Bzeih
- BioCIS; Equipe Labellisée Ligue Contre Le Cancer; Univ. Paris-Sud, CNRS; University Paris-Saclay Châtenay-Malabry 92290 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles; UPR 2301; CNRS Gif-sur-Yvette 91198 France
| | - Mouad Alami
- BioCIS; Equipe Labellisée Ligue Contre Le Cancer; Univ. Paris-Sud, CNRS; University Paris-Saclay Châtenay-Malabry 92290 France
| | - Abdallah Hamze
- BioCIS; Equipe Labellisée Ligue Contre Le Cancer; Univ. Paris-Sud, CNRS; University Paris-Saclay Châtenay-Malabry 92290 France
| |
Collapse
|
27
|
Bzeih T, Lamaa D, Frison G, Hachem A, Jaber N, Bignon J, Retailleau P, Alami M, Hamze A. Csp2–Csp2 and Csp2–N Bond Formation in a One-Pot Reaction between N-Tosylhydrazones and Bromonitrobenzenes: An Unexpected Cyclization to Substituted Indole Derivatives. Org Lett 2017; 19:6700-6703. [DOI: 10.1021/acs.orglett.7b03422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tourin Bzeih
- BioCIS,
Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France
- Laboratory
for Medicinal Chemistry,Faculty of Sciences (1) and PRASE-EDST, Lebanese University, Beirut, Lebanon
| | - Diana Lamaa
- BioCIS,
Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France
| | - Gilles Frison
- LCM,
CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Ali Hachem
- Laboratory
for Medicinal Chemistry,Faculty of Sciences (1) and PRASE-EDST, Lebanese University, Beirut, Lebanon
| | - Nada Jaber
- Laboratory
for Medicinal Chemistry,Faculty of Sciences (1) and PRASE-EDST, Lebanese University, Beirut, Lebanon
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, 91198 Gif-sur-Yvette, France
| | - Mouad Alami
- BioCIS,
Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France
| | - Abdallah Hamze
- BioCIS,
Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France
| |
Collapse
|
28
|
Xia Y, Qiu D, Wang J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem Rev 2017; 117:13810-13889. [PMID: 29091413 DOI: 10.1021/acs.chemrev.7b00382] [Citation(s) in RCA: 800] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions have been well-established as indispensable tools in modern organic synthesis. One of the major research goals in cross-coupling area is expanding the scope of the coupling partners. In the past decade, diazo compounds (or their precursors N-tosylhydrazones) have emerged as nucleophilic cross-coupling partners in C-C single bond or C═C double bond formations in transition-metal-catalyzed reactions. This type of coupling reaction involves the following general steps. First, the organometallic species is generated by various processes, including oxidative addition, transmetalation, cyclization, C-C bond cleavage, and C-H bond activation. Subsequently, the organometallic species reacts with the diazo substrate to generate metal carbene intermediate, which undergoes rapid migratory insertion to form a C-C bond. The new organometallic species generated from migratory insertion may undergo various transformations. This type of carbene-based coupling has proven to be general: various transition metals including Pd, Cu, Rh, Ni, Co, and Ir are effective catalysts; the scope of the reaction has also been extended to substrates other than diazo compounds; and various cascade processes have also been devised based on the carbene migratory insertion. This review will summarize the achievements made in this field since 2001.
Collapse
Affiliation(s)
- Ying Xia
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Di Qiu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
29
|
Seddigi ZS, Malik MS, Saraswati AP, Ahmed SA, Babalghith AO, Lamfon HA, Kamal A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MEDCHEMCOMM 2017; 8:1592-1603. [PMID: 30108870 DOI: 10.1039/c7md00227k] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
The dynamic and crucial role of tubulin in different cellular functions rendered it a promising target in anticancer drug development. Combretastatin A-4 (CA-4), an inhibitor of tubulin polymerization isolated from natural sources, is a lead molecule with significant cytotoxicity against tumour cells. Owing to its non polar nature it exhibits low solubility in natural biological fluids, thereby prompting the development of new CA-4 based derivatives. The modification of this lead molecule was mostly carried out by keeping the crucial cis-orientation of the double bond intact, along with a trimethoxyphenyl aromatic ring, by employing different approaches. The issue of solubility was also addressed by the development of water soluble prodrugs of CA-4. The present review highlights the investigations into the parallel development of both new CA-4 based derivatives and prodrugs in the past few years.
Collapse
Affiliation(s)
- Zaki S Seddigi
- Department of Environmental Health , College of Public Health and Health Informatics , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - M Shaheer Malik
- Science and Technology Unit , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - A Prasanth Saraswati
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Hawazen A Lamfon
- Department of Biology , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| |
Collapse
|
30
|
Samala S, Shin J, Shim JY, Yoo EJ. Regioselective C3 Functionalizations of 9H-Carbazoles via C(sp2)−H Insertions of RhIICarbenoids. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srinivas Samala
- Department of Chemistry; Kangwon National University; 1 Kangwondaehak-gil Chuncheon 24341 Korea
| | - Jinhwan Shin
- Department of Chemistry; Kangwon National University; 1 Kangwondaehak-gil Chuncheon 24341 Korea
| | - Jae Yul Shim
- Department of Chemistry; Kangwon National University; 1 Kangwondaehak-gil Chuncheon 24341 Korea
| | - Eun Jeong Yoo
- Department of Chemistry; Kangwon National University; 1 Kangwondaehak-gil Chuncheon 24341 Korea
| |
Collapse
|
31
|
Paraja M, Barroso R, Cabal MP, Valdés C. Synthesis of Highly Substituted Polyenes by Palladium-Catalyzed Cross-Couplings of Sterically Encumbered Alkenyl Bromides andN-Tosylhydrazones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8 33006 Oviedo Spain
| | - Raquel Barroso
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8 33006 Oviedo Spain
| | - M. Paz Cabal
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
32
|
Perato S, Large B, Lu Q, Gaucher A, Prim D. Pyridylmethylamine-Palladium Catalytic Systems: A Selective Alternative in the C−H Arylation of Indole. ChemCatChem 2017. [DOI: 10.1002/cctc.201601275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serge Perato
- University of Versailles St. Quentin; Institut Lavoisier de Versailles, UMR CNRS 8180; 45, Avenue des Etats-Unis 78035 Versailles France
| | - Benjamin Large
- University of Versailles St. Quentin; Institut Lavoisier de Versailles, UMR CNRS 8180; 45, Avenue des Etats-Unis 78035 Versailles France
| | - Qiao Lu
- University of Versailles St. Quentin; Institut Lavoisier de Versailles, UMR CNRS 8180; 45, Avenue des Etats-Unis 78035 Versailles France
| | - Anne Gaucher
- University of Versailles St. Quentin; Institut Lavoisier de Versailles, UMR CNRS 8180; 45, Avenue des Etats-Unis 78035 Versailles France
| | - Damien Prim
- University of Versailles St. Quentin; Institut Lavoisier de Versailles, UMR CNRS 8180; 45, Avenue des Etats-Unis 78035 Versailles France
| |
Collapse
|
33
|
Xia Y, Wang J. N-Tosylhydrazones: versatile synthons in the construction of cyclic compounds. Chem Soc Rev 2017; 46:2306-2362. [DOI: 10.1039/c6cs00737f] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Tosylhydrazones have been extensively explored as versatile building blocks in the construction of various cyclic compounds.
Collapse
Affiliation(s)
- Ying Xia
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
34
|
Qiu D, Mo F, Zhang Y, Wang J. Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions With N -Tosylhydrazones. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|