1
|
Banoo T, Ghosh A, Mishra P, Roy S, Nagarajan S. Biocompatible glycolipid derived from bhilawanol as an antibiofilm agent and a promising platform for drug delivery. RSC Med Chem 2025:d4md00828f. [PMID: 39925733 PMCID: PMC11799929 DOI: 10.1039/d4md00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Stimuli-responsive smart materials for biomedical applications have gained significant attention because of their potential for selectivity and sensitivity in biological systems. Even though ample stimuli-responsive materials are available, the use of traditional Ayurvedic compounds in the fabrication of pharmaceuticals is limited. Among various materials, gels are one of the essential classes because of their molecular-level tunability with little effort from the environment. In this study, we report a simple synthesis method for multifunctional glycolipids using a starting material derived from biologically significant natural molecules and carbohydrates in good yields. The synthesized glycolipids were prone to form a hydrogel by creating a 3D fibrous architecture. The mechanism of bottom-up assembly involving the molecular-level interaction was studied in detail using SEM, XRD, FTIR, and NMR spectroscopy. The stability, processability, and thixotropic behavior of the hydrogel were investigated through rheological measurements, and it was identified to be more suitable for biomedical applications. To evaluate the potential application of the self-assembled hydrogel in the field of medicine, we encapsulated a natural drug, curcumin, into a gel and studied its pH as a stimuli-responsive release profile. Interestingly, the encapsulated drug was released both in acidic and basic pH levels at a different rate, as identified using UV-vis spectroscopy. It is worth mentioning that the gelator used for fabricating smart soft materials displays significant potential in selectively compacting the biofilm formed by Streptococcus pneumoniae. We believe that the reported multifunctional hydrogel derived from bhilawanol-based glycolipid holds great promise in medicine.
Collapse
Affiliation(s)
- Tohira Banoo
- Assembled Organic and Hybrid Material Lab, Department of Chemistry, National Institute of Technology Warangal Hanumakonda-506004 Telangana India
| | - Abhijit Ghosh
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Priyasha Mishra
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Sanhita Roy
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Subbiah Nagarajan
- Assembled Organic and Hybrid Material Lab, Department of Chemistry, National Institute of Technology Warangal Hanumakonda-506004 Telangana India
| |
Collapse
|
2
|
Alene D, Chung WS. Stiff-Stilbene-Linked Bis-Cholesterol: Synthesis and Investigation of Its Supramolecular Gelation and Photophysical Behaviors. ACS OMEGA 2025; 10:1789-1799. [PMID: 39829540 PMCID: PMC11740128 DOI: 10.1021/acsomega.4c10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Here, we report the design, synthesis, and comprehensive characterization of the bis-cholesterol supramolecular gelator, which contains photochromic stiff-stilbene as a bridging unit. The cis-isomer of stiff-stilbene bridged bis-cholesterol (Z-D) was first synthesized with a systematic design, which can be further converted into its trans-isomer (E-D) with a high degree of efficiency (ca. 100%) upon exposure to 385 nm UV light. Unusual gelation behavior was observed for Z-D, which exhibited supergelator properties in mixed solvents of acetonitrile (ACN)/dichloromethane (DCM) (v/v = 1:1), DCM/MeOH (v/v = 1:2), ACN/CHCl3 (v/v = 2:1), and CHCl3/MeOH (v/v = 1:2), with minimum gelation concentrations (MGCs) as low as 0.2 w/v%. These gels formed rapidly at room temperature without the aid of any mechanical forces upon the addition of an antisolvent into the vial containing the gelator and its dissolving solvent. The formation of the self-assembled gel was primarily driven by hydrogen bonding, van der Waals forces, and dipole-dipole interactions, as confirmed by 1H NMR, Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectroscopies. The gelator molecule Z-D entraps organic solvents and organizes itself into three-dimensional (3D) fibrillar networks in various single and mixed solvents, as confirmed by scanning electron microscopy (SEM) analysis. Upon irradiation with 385 nm light, the gel networks disintegrated into a precipitate suspension, resulting in the transformation of the fibrous structures into irregular spherical-like aggregates. This proves that the structural conformation changes in the gelator significantly influence the resulting self-assembled structures. Overall, the findings present in this study pave the way for the future development of novel light-responsive bis-cholesterol-based gelators, especially in their Z-isomeric form.
Collapse
Affiliation(s)
- Dagninet
Yeshiwas Alene
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| |
Collapse
|
3
|
Vara Prasad R, Kumar Y, Arun Kumar R, Banoo T, Nagarajan S. Regioselective synthesis of 4-arylamino-1,2-naphthoquinones in eutectogel as a confined reaction medium using LED light. Org Biomol Chem 2024; 22:3876-3881. [PMID: 38651749 DOI: 10.1039/d4ob00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Predicting selectivity and conversion in a confined reaction medium under photochemical conditions is highly challenging as compared to the corresponding conventional synthesis. Herein, we report the use of a simple carbohydrate-derived eutectogel to facilitate LED-light-induced regioselective synthesis of 4-arylamino-1,2-naphthoquinones in good yield. This methodology, by including a reusable reaction medium, proved to have the potential of affording the regioselective formation of various desired products in good yields.
Collapse
Affiliation(s)
- R Vara Prasad
- Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India.
| | - Yogendra Kumar
- Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India.
| | - R Arun Kumar
- Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India.
| | - Tohira Banoo
- Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India.
| | - Subbiah Nagarajan
- Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India.
| |
Collapse
|
4
|
Singh V, Thamizhanban A, Lalitha K, Subbiah DK, Rachamalla AK, Rebaka VP, Banoo T, Kumar Y, Sridharan V, Ahmad A, Maheswari Chockalingam U, Balaguru Rayappan JB, Khan AA, Nagarajan S. Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection. Gels 2023; 9:442. [PMID: 37367114 DOI: 10.3390/gels9060442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The inhalation, ingestion, and body absorption of noxious gases lead to severe tissue damage, ophthalmological issues, and neurodegenerative disorders; death may even occur when recognized too late. In particular, methanol gas present in traces can cause blindness, non-reversible organ failure, and even death. Even though ample materials are available for the detection of methanol in other alcoholic analogs at ppm level, their scope is very limited because of the use of either toxic or expensive raw materials or tedious fabrication procedures. In this paper, we report on a simple synthesis of fluorescent amphiphiles achieved using a starting material derived from renewable resources, this material being methyl ricinoleate in good yields. The newly synthesized bio-based amphiphiles were prone to form a gel in a broad range of solvents. The morphology of the gel and the molecular-level interaction involved in the self-assembly process were thoroughly investigated. Rheological studies were carried out to probe the stability, thermal processability, and thixotropic behavior. In order to evaluate the potential application of the self-assembled gel in the field of sensors, we performed sensor measurements. Interestingly, the twisted fibers derived from the molecular assembly could be able to display a stable and selective response towards methanol. We believe that the bottom-up assembled system holds great promise in the environmental, healthcare, medicine, and biological fields.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Ayyapillai Thamizhanban
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Dinesh Kumar Subbiah
- Centre for Nano Technology & Advanced Biomaterials (CeNTAB), School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Arun Kumar Rachamalla
- Assembled Organic and Hybrid Materials Research Laboratory, Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Vara Prasad Rebaka
- Assembled Organic and Hybrid Materials Research Laboratory, Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Tohira Banoo
- Assembled Organic and Hybrid Materials Research Laboratory, Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Yogendra Kumar
- Assembled Organic and Hybrid Materials Research Laboratory, Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC 20001, USA
| | - Uma Maheswari Chockalingam
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - John Bosco Balaguru Rayappan
- Centre for Nano Technology & Advanced Biomaterials (CeNTAB), School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
- Assembled Organic and Hybrid Materials Research Laboratory, Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
5
|
Singh V, Prasad YS, Rachamalla AK, Rebaka VP, Banoo T, Maheswari CU, Sridharan V, Lalitha K, Nagarajan S. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications. RSC Adv 2022; 12:2009-2018. [PMID: 35425233 PMCID: PMC8979040 DOI: 10.1039/d1ra08447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
The design and synthesis of amphiphilic molecules play a crucial role in fabricating smart functional materials via self-assembly. Especially, biologically significant natural molecules and their structural analogues have inspired chemists and made a major contribution to the development of advanced smart materials. In this report, a series of amphiphilic N-acyl amides were synthesized from natural precursors using a simple synthetic protocol. Interestingly, the self-assembly of amphiphiles 6a and 7a furnished a hydrogel and oleogel in vegetable oils. Morphological analysis of gels revealed the existence of a 3-dimensional fibrous network. Thermoresponsive and thixotropic behavior of these gels were evaluated using rheological analysis. A composite gel prepared by the encapsulation of curcumin in the hydrogel formed from 7a displayed a gel-sol transition in response to pH and could act as a dual channel responsive drug carrier.
Collapse
Affiliation(s)
- Vandana Singh
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Yadavali Siva Prasad
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Biomedical Engineering, Saveetha School of Engineering Saveetha Nagar Thandalam Tamil Nadu India
| | - Arun Kumar Rachamalla
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Vara Prasad Rebaka
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Tohira Banoo
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - C Uma Maheswari
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143 J&K India
| | - Krishnamoorthy Lalitha
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Subbiah Nagarajan
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|
6
|
Qi H, Zhang T, Jing C, Zhang Z, Chen Y, Chen Y, Deng Q, Wang S. Metal-organic gel as a fluorescence sensing platform to trace copper(II). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:52-57. [PMID: 34889920 DOI: 10.1039/d1ay01716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic gel (MOG), as a novel type of metallic organic hybrid material, exhibits diverse properties. However, its application in fluorescence detection for specific metal ions has rarely been exploited. In this work, we have designed and synthesized a MOG based on Al-carboxylate coordination assemblies (denoted as MOG-Al). The resultant MOG-Al shows good specific fluorescence signal response to trace Cu2+. Under optimal conditions, the fluorescence quenching degrees (F0 - F) of the MOG-Al have a linear correlation with Cu2+ concentration ranging from 0.05 to 100 μM, and the limit of detection (LOD) is 45.00 nM. The proposed sensing platform was also applied for the detection of Cu2+ in real samples. Satisfactory recoveries (92-116%) for Cu2+ in rice, soybean milk powder and pork liver were obtained. These results indicate that MOG-Al is a promising material for the specific and sensitive sensing of Cu2+.
Collapse
Affiliation(s)
- Hao Qi
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tianli Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chuang Jing
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhen Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yujie Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yali Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiliang Deng
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Supramolecular assembly inspired molecular engineering to dynamically tune non-Newtonian fluid:from quasi-static flowability-free to shear thickening. J Colloid Interface Sci 2021; 607:1805-1812. [PMID: 34600344 DOI: 10.1016/j.jcis.2021.09.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Shear thickening fluids (STFs) have been the research focus for decades because of the prospect as a damping ingredient. However, their inherent liquid character confines their practical applications. In this work, inspired by the assembly engineering, novel gelatinous shear thickening fluids (GSTFs) are fabricated by integrating low molecular weight gelators (LMWGs) into STFs and investigated by rheological experiments. The results show that the apparent performances of GSTFs are determined by the LMWGs content. LMWGs inside GSTFs can assemble into three-dimensional network that can constraint the flowability of liquid molecular and their content dominate the density and strength of assembly network. At a moderate content, GSTFs exhibit desired properties with restricted quasi-static flowability and almost undamaged dynamic shear thickening character. While a higher content will disappear shear thickening and a lower content cannot gelate STFs. Besides, three different LMWGs are employed to gelate STFs and all they can gelate STFs in spite of the distinct minimum gelation concentration, indicating the universality for GSTFs preparation and the superiority of a reasonable molecular structure of LMWGs. Further, the temperature sweep experiments suggest that GSTFs can endure higher temperature without flowing due to its higher gel-sol transition temperature. Basing on these advanced mechanical properties, we believe that the GSTFs with more expected characters have significance for the study of non-Newtonian fluids and will broaden the special application field of STFs.
Collapse
|
8
|
Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Thamizhanban A, Sarvepalli GP, Lalitha K, Prasad YS, Subbiah DK, Das A, Balaguru Rayappan JB, Nagarajan S. Fabrication of Biobased Hydrophobic Hybrid Cotton Fabrics Using Molecular Self-Assembly: Applications in the Development of Gas Sensor Fabrics. ACS OMEGA 2020; 5:3839-3848. [PMID: 32149210 PMCID: PMC7057323 DOI: 10.1021/acsomega.9b02733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 05/10/2023]
Abstract
Inadvertent inhalation of various volatile organic compounds during industrial processes, such as coal and metal mining, metal manufacturing, paper and pulp industry, food processing, petroleum refining, and concrete and chemical industries, has caused an adverse effect on human health. In particular, exposure to trimethylamine (TMA), a fishy odor poisonous gas, resulted in numerous health hazards such as neurotoxicity, irritation in eyes, nose, skin, and throat, blurred vision, and many more. According to the environmental protection agency, TMA in the level of 0.10 ppm is generally considered as safe, and excess dose results in "trimethylaminuria" or "fish odor syndrome." In order to avoid the health hazards associated with the inhalation of TMA, there is an urge to design a sensor for TMA detection even at low levels for use in food-processing industries, medical diagnosis, and environment. In this report, for the first time, we have developed a TMA sensor fabric using a sequential self-assembly process from silver-incorporated glycolipids. Formation of self-assembled supramolecular architecture, interaction of the assembled structure with the cotton fabric, and sensing mechanism were completely investigated with the help of various instrumental methods. To our surprise, the developed fabric displayed a transient response for 1-500 ppm of TMA and a stable response toward 100 ppm of TMA for 15 days. We believe that the reported flexible TMA sensor fabrics developed via the sequential self-assembly process hold great promise for various innovative applications in environment, healthcare, medicine, and biology.
Collapse
Affiliation(s)
- Ayyapillai Thamizhanban
- Department
of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Guru Prasanth Sarvepalli
- Department
of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
- Centre
for Nano Technology & Advanced Biomaterials (CeNTAB) and School
of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Krishnamoorthy Lalitha
- Department
of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Yadavali Siva Prasad
- Department
of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Dinesh Kumar Subbiah
- Centre
for Nano Technology & Advanced Biomaterials (CeNTAB) and School
of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Apurba Das
- Department
of Textile & Fibre Engineering, Indian
Institute of Technology, New Delhi 110 016, India
| | - John Bosco Balaguru Rayappan
- Centre
for Nano Technology & Advanced Biomaterials (CeNTAB) and School
of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
- E-mail: (J.B.B.R.)
| | - Subbiah Nagarajan
- Department
of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
- Department
of Chemistry, National Institute of Technology
Warangal, Warangal 506004, Telangana, India
- E-mail: , (S.N.)
| |
Collapse
|
10
|
John G, Nagarajan S, Vemula PK, Silverman JR, Pillai C. Natural monomers: A mine for functional and sustainable materials – Occurrence, chemical modification and polymerization. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Thamizhanban A, Lalitha K, Nagarajan S. Self-Assembled Soft Materials for Energy and Environmental Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
12
|
Thamizhanban A, Lalitha K, Sarvepalli GP, Maheswari CU, Sridharan V, Rayappan JBB, Nagarajan S. Smart supramolecular gels of enolizable amphiphilic glycosylfuran. J Mater Chem B 2019; 7:6238-6246. [DOI: 10.1039/c9tb01480b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this report, bio-based amphiphilic glycosylfurans were synthesized using a biocatalyst. For the first time, we are reporting on hydrogelation via in situ molecular tuning of amphiphilic glycosylfurans followed by a self-sorting mechanism.
Collapse
Affiliation(s)
- Ayyapillai Thamizhanban
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Krishnamoorthy Lalitha
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Guru Prasanth Sarvepalli
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Rahya-Suchani (Bagla)
- Jammu – 181143
- India
| | | | - Subbiah Nagarajan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| |
Collapse
|
13
|
Prasad YS, Saritha B, Tamizhanban A, Lalitha K, Kabilan S, Maheswari CU, Sridharan V, Nagarajan S. Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials. RSC Adv 2018; 8:37136-37145. [PMID: 35557831 PMCID: PMC9089313 DOI: 10.1039/c8ra07703g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel derived from glycolipids that provide reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration. Glycolipids were derived from α-chloralose and various vinyl esters using Novozyme 435, an immobilized lipase B from Candida antarctica as a catalyst, in good yield. These glycolipids undergo spontaneous self-assembly in paraffin oil to form an oleogel, in which curcumin was successfully incorporated to generate a composite gel. Morphological analysis of the oleogel and composite gel clearly revealed the formation of a 3D fiberous network. Rheological investigation revealed the thermal and mechanical processability of the oleogel and composite gel under various experimental conditions. Interestingly, the developed injectable oleogel and composite gel are able to accelerate the wound healing process by regulating the overlapping phases of inflammation, cell proliferation and extracellular matrix remodelling. Since chloralose displays anesthetic properties, this study will establish a new strategy to develop anesthetic wound healing oleogels in the future.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Balasubramani Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Ayyapillai Tamizhanban
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Sakthivel Kabilan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla) District-Samba Jammu-181143 Jammu and Kashmir India
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|
14
|
Muthusamy K, Lalitha K, Prasad YS, Thamizhanban A, Sridharan V, Maheswari CU, Nagarajan S. Lipase-Catalyzed Synthesis of Furan-Based Oligoesters and their Self-Assembly-Assisted Polymerization. CHEMSUSCHEM 2018; 11:2453-2463. [PMID: 29750850 DOI: 10.1002/cssc.201800446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 06/08/2023]
Abstract
We investigate the synthesis of bio-based hydrophilic and hydrophobic oligoesters, which in turn are derived from easily accessible monomers from natural resources. In addition to the selection of renewable monomers, Novozyme 435, an immobilized lipase B from Candida antarctica was used for the oligomerization of monomers. The reaction conditions for oligomerization using Novozyme 435 were established to obtain a moderate-to-good yield. The average number of repeating units and the molecular weight distribution of hydrophilic and hydrophobic oligoester were identified by using NMR spectroscopy, gel-permeation chromatography, and MS. The oligoester derived from a hydrophilic monomer self-assembled to form a viscous solution, which upon further heating resulted in the formation of a polymer by the intermolecular Diels-Alder reaction. The viscosity of the solution and the assembly of oligoester to form a fibrous structure were investigated by using rheological studies, XRD, and SEM. The molecular weight of the cross-linked polymer was identified by using matrix-assisted laser desorption/ionization-MS. The thermal properties of the bio-based polymers were investigated by using thermogravimetric analysis and differential scanning calorimetry. For the first time, the self-assembly-assisted polymerization of an oligoester is reported using the intermolecular Diels-Alder reaction, which opens a new avenue in the field of polymer science.
Collapse
Affiliation(s)
- Kumarasamy Muthusamy
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
| | - Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
| | - Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
| | - Ayyapillai Thamizhanban
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-, 181143, Jammu and Kashmir, India
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-, 613401, India
- Department of Chemistry, National Institute of Technology, Warangal, Warangal-, 506004, Telangana, India
| |
Collapse
|
15
|
Maity A, Dey A, Si MK, Ganguly B, Das A. Impact of "half-crown/two carbonyl"-Ca 2+ metal ion interactions of a low molecular weight gelator (LMWG) on its fiber to nanosphere morphology transformation with a gel-to-sol phase transition. SOFT MATTER 2018; 14:5821-5831. [PMID: 29972192 DOI: 10.1039/c8sm01071d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report here a smart functional low molecular weight gelator (LMWG) L, containing an unusual metal ion coordination site, i.e. "half-crown/two carbonyl". The gelator L shows excellent gelation behavior with typical fibrillar morphology in acetonitrile, methanol and ethanol media. Upon Ca2+ ion binding with its "half-crown/two carbonyl" coordination site, the acetonitrile gel of L exhibits a fiber to nanosphere morphology transformation along with a gel-to-sol phase transition as confirmed by microscopic investigation and by direct naked eye visualization, respectively. The mechanism involved in this morphology transformation and gel-to-sol phase transition process was studied thoroughly with the help of computational calculations and various spectroscopic experiments and discussed.
Collapse
Affiliation(s)
- Arunava Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| | | | | | | | | |
Collapse
|
16
|
Staicu T, Iliş M, Cîrcu V, Micutz M. Influence of hydrocarbon moieties of partially fluorinated N -benzoyl thiourea compounds on their gelation properties. A detailed rheological study of complex viscoelastic behavior of decanol/ N -benzoyl thiourea mixtures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Wang L, Shi X, Zhang J, Zhu Y, Wang J. Self-assembled pH-responsive supramolecular hydrogel for hydrophobic drug delivery. RSC Adv 2018; 8:31581-31587. [PMID: 35548234 PMCID: PMC9085726 DOI: 10.1039/c8ra06064a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel supramolecular hydrogel system, abbreviated as AGC16/NTS, prepared by molecular self-assembly of cationic gemini surfactant 1,3-bis(N,N-dimethyl-N-cetylammonium)-2-propylacrylatedibromide (AGC16) and anionic aromatic compound trisodium 1,3,6-naphthalenetrisulfonate (NTS), was used to encapsulate hydrophobic model drug curcumin (Cur), constructing a pH-responsive drug delivery system. Cur was effectively encapsulated into the hydrophobic domains of AGC16/NTS through hydrophobic interaction, which was confirmed by 1H NMR measurement. The effects of Cur on the mechanical strength, phase transition behaviour and morphology of AGC16/NTS were characterized by rheology and cryogenic scanning electron microscopy (cryo-SEM) methods. The pH-responsive release of Cur from AGC16/NTS was obtained and the release amount of Cur ascended with pH value decreasing from 7.4 to 3.0. The hydrodynamic sizes of the released Cur-aggregates determined by dynamic light scattering (DLS) were used to analyse the release process of Cur at different pH. The cell viability assay and cell imaging experiment demonstrated that Cur-loaded hydrogel has much higher cytotoxicity and better cell uptake compared to free Cur. Overall, the AGC16/NTS hydrogel is a prospective material for use in encapsulation and controlled-release of hydrophobic drug molecules. Supramolecular hydrogel, AGC16/NTS, was used to encapsulate hydrophobic drug curcumin (Cur), constructing a pH-responsive drug delivery system; the uptake of released Cur by cancer cells also occurred.![]()
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xuefeng Shi
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jian Zhang
- State Key Laboratory of Offshore Oil Exploitation
- CNOOC Research Institute Co. Ltd
- Beijing 100028
- P. R. China
| | - Yuejun Zhu
- State Key Laboratory of Offshore Oil Exploitation
- CNOOC Research Institute Co. Ltd
- Beijing 100028
- P. R. China
| | - Jinben Wang
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Lalitha K, Gayathri K, Prasad YS, Saritha R, Thamizhanban A, Maheswari CU, Sridharan V, Nagarajan S. Supramolecular Gel Formation Based on Glycolipids Derived from Renewable Resources. Gels 2017; 4:E1. [PMID: 30674777 PMCID: PMC6318777 DOI: 10.3390/gels4010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The potential applications of self-assembled supramolecular gels based on natural molecules encouraged the researchers to develop a versatile synthetic method for their structural analogues. Herein, we report a facile synthesis of glycolipid from renewable resources, cashew nut shell liquid,d and d-glucose in good yield. Gelation behavior of these glycolipids were studied in a wide range of solvents and oils. To our delight, compound 5b formed a hydrogel with Critical gelator concentration (CGC) of 0.29% w/v. Morphological analysis of the hydrogel depicts the formation of twisted fibers with an entangled network. Formation of a twisted fibrous structure was further identified by CD spectral studies with respect to temperature. The molecular self-assembly assisted by hydrogen bonding, hydrophobic, and π⁻π stacking interactions were identified by X-ray diffraction (XRD) and FTIR studies. Rheological analysis depicted the mechanical strength and stability of the hydrogel, which is crucial in predicting the practical applications of supramolecular soft materials.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Kandasamy Gayathri
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Rajendhiran Saritha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - A Thamizhanban
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, Jammu and Kashmir, India.
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| |
Collapse
|
19
|
Prasad YS, Miryala S, Lalitha K, Ranjitha K, Barbhaiwala S, Sridharan V, Maheswari CU, Srinandan CS, Nagarajan S. Disassembly of Bacterial Biofilms by the Self-Assembled Glycolipids Derived from Renewable Resources. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40047-40058. [PMID: 29096062 DOI: 10.1021/acsami.7b12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of chronic infections of bacteria are caused by biofilms. It is also a long-term survival strategy of the pathogens in a nonhost environment. Several amphiphilic molecules have been used in the past to potentially disrupt biofilms; however, the involvement of multistep synthesis, complicated purification and poor yield still remains a major problem. Herein, we report a facile synthesis of glycolipid based surfactant from renewable feedstocks in good yield. The nature of carbohydrate unit present in glycolipid influence the ring chain tautomerism, which resulted in the existence of either cyclic structure or both cyclic and acyclic structures. Interestingly, these glycolipids self-assemble into gel in highly hydrophobic solvents and vegetable oils, and displayed foam formation in water. The potential application of these self-assembled glycolipids to disrupt preformed biofilm was examined against various pathogens. It was observed that glycolipid 6a disrupts Staphylococcus aureus and Listeria monocytogenes biofilm, while the compound 6c was effective in disassembling uropathogenic E. coli and Salmonella enterica Typhimurium biofilms. Altogether, the supramolecular self-assembled materials, either as gel or as surfactant solution could be potentially used for surface cleansing in hospital environments or the food processing industries to effectively reduce pathogenic biofilms.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - K Ranjitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Shehnaz Barbhaiwala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
20
|
Lin Q, Liu L, Liu J, Zheng F, Zhang YM, Yao H, Wei TB. An efficient iodide ion chemosensor and a rewritable dual-channel security display material based on an ion responsive supramolecular gel. RSC Adv 2017. [DOI: 10.1039/c7ra06238a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ion stimuli-responsive metallogel PbG could act as a highly selective and sensitive I− sensor and a rewritable dual-channel security display material.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Juan Liu
- College of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- P. R. China
| | - Feng Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|