1
|
Hu Y, Zhang S, Zhou Z, Cao Z. Heterogeneous Coprecipitation of Nanocrystals with Metals on Substrates. Acc Chem Res 2024; 57:1254-1263. [PMID: 38488208 DOI: 10.1021/acs.accounts.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ConspectusThe heterogeneous coprecipitation of nanocrystals with metals on substrates plays a significant role in both natural and engineered systems. Due to the small dimensions and thereby the large specific surface area, nanocrystal coprecipitation with metals, which is ubiquitous in natural settings, exerts drastic effects on the biogeochemical cycling of metals on the earth's crust. Meanwhile, the controlled synthesis of nanocrystals with metal doping to achieve tunable size/composition enables their broad applications as adsorbents and catalysts in many engineered settings. Despite their importance, complex interactions among aqueous ions/polymers, nanocrystals, substrates, and metals are far from being well-understood, leaving the controlling mechanisms for nanocrystal formation with metals on substrates uncovered.In this Account, we discuss our systematic investigation over the past 10 years of the heterogeneous formation of representative nanocrystals with metals on typical substrates. We chose Fe(OH)3 and BaSO4 as representative nanocrystals. Mechanisms for varied metal coprecipitation were also investigated for both types of nanocrystals (i.e., Fe, Al, Cr, Cu, and Pb)(OH)3 and (Ba, Sr)(SO4, SeO4, and SeO3)). Bare SiO2 and Al2O3, as well as those coated with varied organics, were selected as geologically or synthetically representative substrates. Through the integration of state-of-the-art nanoscale interfacial characterization techniques with theoretical calculations, the complex interactions during nanocrystal formation at interfaces were probed and the controlling mechanisms were identified.For BaSO4 and Fe(OH)3 formation on substrates, the local supersaturation levels near substrates were controlled by Ba2+ adsorption and the electrostatic attraction of Fe(OH)3 monomer/polymer to substrates, respectively. Meanwhile, substrate hydrophobicity controlled the interfacial energy for the nucleation of both nanocrystals on (in)organic substrates. Metal ions' (i.e., Cr/Al/Cu/Pb) hydrolysis constants and substrates' dielectric constants controlled metal ion adsorption onto substrates, which altered the surface charges of substrates, thus controlling heterogeneous Fe(OH)3 nanocrystal formation on substrates by electrostatic interactions. The sizes and compositions of heterogeneous (Fe, Cr)(OH)3 and (Ba, Sr)(SO4, SeO4, SeO3) formed on substrates were found to be distinct from those of homogeneous precipitates formed in solution. The substrate (de)protonation could alter the local solution's pH and the substrates' surface charge; substrates could also adsorb cations, affecting local Fe/Cr/Ba/Sr ion concentrations at solid-water interfaces, thus controlling the amount/size/composition of nanocrystals by tuning their nucleation/growth/deposition on substrates. From slightly supersaturated solution, homogeneous coprecipitates of microsized (Ba, Sr)(SO4, SeO4, SeO3) formed through growth, with little Sr/Se(VI) incorporation due to higher solubilities of SrSO4 and BaSeO4 over BaSO4. While cation enrichment near substrates made the local solution highly supersaturated, nanosized coprecipitates formed on substrates through nucleation, with more Sr/Se(VI) incorporation due to lower interfacial energies of SrSO4 and BaSeO4 over BaSO4. The new insights gained advanced our understanding of the biogeochemical cycling of varied elements at solid-water interfaces and of the controlled synthesis of functional nanocrystals.
Collapse
Affiliation(s)
- Yandi Hu
- School of Environmental Science and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Suona Zhang
- School of Environmental Science and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Zehao Zhou
- School of Environmental Science and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Zhiqian Cao
- School of Environmental Science and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
2
|
Cao Z, Hu Y, Zhao H, Cao B, Zhang P. Sulfate mineral scaling: From fundamental mechanisms to control strategies. WATER RESEARCH 2022; 222:118945. [PMID: 35963137 DOI: 10.1016/j.watres.2022.118945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Sulfate scaling, as insoluble inorganic sulfate deposits, can cause serious operational problems in various industries, such as blockage of membrane pores and subsurface media and impairment of equipment functionality. There is limited article to bridge sulfate formation mechanisms with field scaling control practice. This article reviews the molecular-level interfacial reactions and thermodynamic basis controlling homogeneous and heterogeneous sulfate mineral nucleation and growth through classical and non-classical pathways. Common sulfate scaling control strategies were also reviewed, including pretreatment, chemical inhibition and surface modification. Furthermore, efforts were made to link the fundamental theories with industrial scale control practices. Effects of common inhibitors on different steps of sulfate formation pathways (i.e., ion pair and cluster formation, nucleation, and growth) were thoroughly discussed. Surface modifications to industrial facilities and membrane units were clarified as controlling either the deposition of homogeneous precipitates or the heterogeneous nucleation. Future research directions in terms of optimizing sulfate chemical inhibitor design and improving surface modifications are also discussed. This article aims to keep the readers abreast of the latest development in mechanistic understanding and control strategies of sulfate scale formation and to bridge knowledge developed in interfacial chemistry with engineering practice.
Collapse
Affiliation(s)
- Zhiqian Cao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Cao
- KIT Professionals, Inc., Houston, TX, USA
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
3
|
Cho Y, Moon M, Holló G, Lagzi I, Yang SH. Bioinspired Control of Calcium Phosphate Liesegang Patterns Using Anionic Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2515-2524. [PMID: 35148116 PMCID: PMC8892956 DOI: 10.1021/acs.langmuir.1c02980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Indexed: 05/31/2023]
Abstract
The Liesegang phenomenon is a spontaneous pattern formation, which is a periodic distribution of the precipitate discovered in diffusion-limited systems. Over the past century, it has been experimentally attempted to control the periodicity of patterns and structures of precipitates by varying the concentration of the hydrogel or electrolytes, adding organic or inorganic impurities, and applying an electric or pH field. In this work, the periodic patterns of calcium phosphate were manipulated with an anionic macromolecular additive inspired by bone mineralization in which various noncollagenous proteins are involved in the formation of a polymer-induced liquid precursor. The periodic patterns were systematically controlled by adjusting the amount of poly(acrylic acid), and they were numerically simulated by adjusting the threshold concentration of nucleation. The change of the pattern is explained by improved stability and directional diffusion of the intermediate.
Collapse
Affiliation(s)
- Young
Shin Cho
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Miyoung Moon
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Gábor Holló
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - István Lagzi
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
- Department
of Physics, Budapest University of Technology
and Economics, Budapest H-1111, Hungary
| | - Sung Ho Yang
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| |
Collapse
|
4
|
Fillingham R, Boon M, Javaid S, Saunders JA, Jones F. Barium sulfate crystallization in non-aqueous solvent. CrystEngComm 2021. [DOI: 10.1039/d0ce01664k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dielectric constant impacts on oriented attachment as well as solubility and morphology.
Collapse
Affiliation(s)
- Ryan Fillingham
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Australia
| | - Matthew Boon
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Australia
| | - Shaghraf Javaid
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Australia
| | - J. Alex Saunders
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Australia
| | - Franca Jones
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Australia
| |
Collapse
|
5
|
Sosa RD, Conrad JC, Reynolds MA, Rimer JD. Suppressing barite crystallization with organophosphorus compounds. CrystEngComm 2021. [DOI: 10.1039/d1ce00813g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naturally derived phosphorous-containing molecule, phytate, functions as a dual inhibitor of barium sulfate (barite) nucleation and growth, making it a potentially viable environmentally-friendly alternative to current barite scale treatments.
Collapse
Affiliation(s)
- Ricardo D. Sosa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
6
|
Ruiz-Agudo C, McDonogh D, Avaro JT, Schupp DJ, Gebauer D. Capturing an amorphous BaSO 4 intermediate precursor to barite. CrystEngComm 2020. [DOI: 10.1039/c9ce01555h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the work presented here, free-barium activity was monitored during the barium sulfate crystallization and we identified for the first time (in the absence of additives) a metastable BaSO4 amorphous phase that precedes barite formation.
Collapse
Affiliation(s)
| | - David McDonogh
- Institute of Inorganic Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| | | | | | - Denis Gebauer
- Institute of Inorganic Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| |
Collapse
|
7
|
Gebauer D, Wolf SE. Designing Solid Materials from Their Solute State: A Shift in Paradigms toward a Holistic Approach in Functional Materials Chemistry. J Am Chem Soc 2019; 141:4490-4504. [DOI: 10.1021/jacs.8b13231] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Gebauer
- Department of Chemistry, Physical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephan E. Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics and Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Zhang Y, Xie B, Zhang R. Morphology control of BaCO 3 by template and polymer–inorganic precursor. NEW J CHEM 2018. [DOI: 10.1039/c7nj03984k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BaCO3 nanorods are prepared in pore channels modified with polyelectrolyte layers, combining with polymer–inorganic precursor to regulate crystallization process.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Beibei Xie
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Renjie Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
- National Engineering Technology Research Center for Colloidal Materials
| |
Collapse
|
9
|
Ruiz-Agudo E, Burgos-Cara A, Ruiz-Agudo C, Ibañez-Velasco A, Cölfen H, Rodriguez-Navarro C. A non-classical view on calcium oxalate precipitation and the role of citrate. Nat Commun 2017; 8:768. [PMID: 28974672 PMCID: PMC5626694 DOI: 10.1038/s41467-017-00756-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
Although calcium oxalates are relevant biominerals, their formation mechanisms remain largely unresolved. Here, we investigate the early stages of calcium oxalate formation in pure and citrate-bearing solutions. Citrate is used as a well-known oxalate precipitation inhibitor; moreover, it resembles the functional domains of the biomolecules that modulate biomineralization. Our data suggest that calcium oxalate forms after Ca2+ and C2O42- association into polynuclear stable complexes that aggregate into larger assemblies, from which amorphous calcium oxalate nucleates. Previous work has explained citrate inhibitory effects according to classical theories. Here we show that citrate interacts with all early stage CaC2O4 species (polynuclear stable complexes and amorphous precursors), inhibiting calcium oxalate nucleation by colloidal stabilization of polynuclear stable complexes and amorphous calcium oxalate. The control that citrate exerts on calcium oxalate biomineralization may thus begin earlier than previously thought. These insights provide information regarding the mechanisms governing biomineralization, including pathological processes (e.g., kidney stone formation).The formation mechanism of abundant calcium oxalate biomaterials is unresolved. Here the authors show the early stages of calcium oxalate formation in pure and citrate-bearing solutions by using a titration set-up in conjunction with solution quenching, transmission electron microscopy and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Encarnación Ruiz-Agudo
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18071, Granada, Spain.
| | - Alejandro Burgos-Cara
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - Cristina Ruiz-Agudo
- Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149, Münster, Germany.,Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Aurelia Ibañez-Velasco
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|