1
|
Humeniuk A. Approximate Functionals for Multistate Density Functional Theory. J Chem Theory Comput 2024; 20:5497-5509. [PMID: 38905701 DOI: 10.1021/acs.jctc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Recently Lu and Gao [J. Phys. Chem. Lett. 2022, 13 (33), 7762-7769] published a new, rigorous density functional theory for excited states and proved that the projection of the kinetic and electron-repulsion operators into the subspace of the lowest electronic states are a universal functional of the matrix density D(r). This is the first attempt to find an approximation to the multistate universal functional F [ D ( r ) ] . It is shown that F (i) does not explicitly depend on the number of electronic states and (ii) is an analytic matrix functional. The Thomas-Fermi-Dirac-von Weizsäcker model and the correlation energy of the homogeneous electron gas are turned into matrix functionals guided by two principles: that each matrix functional should transform properly under basis set transformations and that the ground state functional should be recovered for a single electronic state. Lieb-Oxford-like bounds on the average kinetic and electron-repulsion energies in the subspace are given. When evaluated on the numerically exact matrix density of LiF, this simple approximation reproduces the matrix elements of the electron-repulsion operator in the basis of the exact eigenstates accurately for all bond lengths. In particular the off-diagonal elements of the effective Hamiltonian that come from the interactions of different electronic states can be calculated with the same or better accuracy than the diagonal elements. Unsurprisingly, the largest error comes from the kinetic energy functional. More exact conditions that constrain the functional form of F are needed to go beyond the local density approximation.
Collapse
Affiliation(s)
- Alexander Humeniuk
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Lee IS, Filatov M, Min SK. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. J Chem Phys 2024; 160:154103. [PMID: 38624116 DOI: 10.1063/5.0202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
A general formulation of the strong coupling between photons confined in a cavity and molecular electronic states is developed for the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham method. The light-matter interaction is included in the Jaynes-Cummings model, which requires the derivation and implementation of the analytical derivatives of the transition dipole moments between the molecular electronic states. The developed formalism is tested in the simulations of the nonadiabatic dynamics in the polaritonic states resulting from the strong coupling between the cavity photon mode and the ground and excited states of the penta-2,4-dieniminium cation, also known as PSB3. Comparison with the field-free simulations of the excited-state decay dynamics in PSB3 reveals that the light-matter coupling can considerably alter the decay dynamics by increasing the excited state lifetime and hindering photochemically induced torsion about the C=C double bonds of PSB3. The necessity of obtaining analytical transition dipole gradients for the accurate propagation of the dynamics is underlined.
Collapse
Affiliation(s)
- In Seong Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Duplaix-Rata G, Le Guennic B, David G. Revisiting magnetic exchange couplings in heterodinuclear complexes through the decomposition method in KS-DFT. Phys Chem Chem Phys 2023; 25:14170-14178. [PMID: 37162514 DOI: 10.1039/d3cp00697b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Providing tools to understand the physical mechanisms governing magnetic properties in transition metal-based compounds is still of great interest. Here, the magnetic exchange coupling in a series of heterodinuclear complexes is investigated by means of the decomposition method. This work presents the first application of the decomposition method to systems where magnetic centres may bear more than one unpaired electron. By decomposing the coupling into three physical contributions (direct exchange, kinetic exchange, and spin polarisation), we provide numerical arguments to confirm or infirm the rationalisation allowed by the conceptual analysis of the magnetic d orbitals. We also take advantage of the recently proposed generalisation of the method [David et al., J. Chem. Theory Comput., 2023, 19, 157] to get more insights into the underlying mechanisms by disentangling the coupling between centres into its electron-electron interactions.
Collapse
Affiliation(s)
- Gwenhaël Duplaix-Rata
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
4
|
David G, Ferré N, Le Guennic B. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. J Chem Theory Comput 2023; 19:157-173. [PMID: 36475691 DOI: 10.1021/acs.jctc.2c01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of broken-symmetry calculations in Kohn-Sham density functional theory has offered an affordable route to study magnetic exchange couplings in transition-metal-based compounds. However, computing this property in compounds exhibiting several couplings is still challenging and especially due to the difficulties to overcome the well-known problem of spin contamination. Here, we present a new and general method to compute magnetic exchange couplings in systems featuring several spin sites. To provide a consistent spin decontamination of J values, our strategy exploits the decomposition method of the magnetic exchange coupling proposed by Coulaud et al. and generalizes our previous work on diradical compounds where the overall magnetic exchange coupling is defined as the sum of its three main and properly extracted physical contributions (direct exchange, kinetic exchange, and spin polarization). In this aim, the generalized extraction of all contributions is presented to systems with multiple spin sites bearing one unpaired electron. This is done by proposing a new paradigm to treat the kinetic exchange contribution, which proceeds through monorelaxations of the magnetic orbitals. This method, so-called the recomposition method, is applied to a compound featuring three Cu(II) ions with a linear arrangement and to a recently synthesized complex containing a Cu4O4 cubane unit presenting an unusual magnetic behavior.
Collapse
Affiliation(s)
- Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013Marseille, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| |
Collapse
|
5
|
Towards the engineering of a photon-only two-stroke rotary molecular motor. Nat Commun 2022; 13:6433. [PMID: 36307476 PMCID: PMC9616945 DOI: 10.1038/s41467-022-33695-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/27/2022] [Indexed: 12/25/2022] Open
Abstract
The rational engineering of photoresponsive materials, e.g., light-driven molecular motors, is a challenging task. Here, we use structure-related design rules to prepare a prototype molecular rotary motor capable of completing an entire revolution using, exclusively, the sequential absorption of two photons; i.e., a photon-only two-stroke motor. The mechanism of rotation is then characterised using a combination of non-adiabatic dynamics simulations and transient absorption spectroscopy measurements. The results show that the rotor moiety rotates axially relative to the stator and produces, within a few picoseconds at ambient T, an intermediate with the same helicity as the starting structure. We discuss how such properties, that include a 0.25 quantum efficiency, can help overcome the operational limitations of the classical overcrowded alkene designs.
Collapse
|
6
|
Tecmer P, Boguslawski K. Geminal-based electronic structure methods in quantum chemistry. Toward a geminal model chemistry. Phys Chem Chem Phys 2022; 24:23026-23048. [PMID: 36149376 DOI: 10.1039/d2cp02528k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we discuss the recent progress in developing geminal-based theories for challenging problems in quantum chemistry. Specifically, we focus on the antisymmetrized geminal power, generalized valence bond, antisymmetrized product of strongly orthogonal geminals, singlet-type orthogonal geminals, the antisymmetric product of 1-reference orbital geminal, also known as the pair coupled cluster doubles ansatz, and geminals constructed from Richardson-Gaudin states. Furthermore, we review various corrections to account for the missing dynamical correlation effects in geminal models and possible extensions to target electronically excited states and open-shell species. Finally, we discuss some numerical examples and present-day challenges for geminal-based models, including a quantitative and qualitative analysis of wave functions, and software availability.
Collapse
Affiliation(s)
- Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Hapka M, Pernal K, Jensen HJA. An efficient implementation of time-dependent linear-response theory for strongly orthogonal geminal wave function models. J Chem Phys 2022; 156:174102. [DOI: 10.1063/5.0082155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an implementation of time-dependent linear-response equations for strongly orthogonal geminal wave function models: the generalized valence bond perfect-pairing theory (TD-GVB) and the antisymmetrized product of strongly orthogonal geminals (TD-APSG). The geminal wave functions are optimized using a restricted-step second-order algorithm suitable for handling many geminals, and the linear-response equations are solved in an efficient way using a direct iterative approach. The wave function optimization algorithm features an original scheme to create initial orbitals for the geminal functions in a black-box fashion. The implementation is employed to examine the accuracy of the geminal linear response for singlet excitation energies of small and medium-sized molecules. In systems dominated by dynamic correlation, geminal models constitute only a minor improvement with respect to time-dependent Hartree-Fock. Compared to linear-response complete active space self-consistent field (LR-CASSCF), TD-GVB either misses or gives large errors for states dominated by double excitations.
Collapse
Affiliation(s)
- Michal Hapka
- Faculty of Chemistry, Warsaw University Faculty of Chemistry, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology Institute of Physics, Poland
| | | |
Collapse
|
8
|
Lee S, Park W, Nakata H, Filatov M, Choi CH. Recent advances in ensemble density functional theory and linear response theory for strong correlation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seunghoon Lee
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California USA
| | - Woojin Park
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Hiroya Nakata
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Michael Filatov
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Cheol Ho Choi
- Department of Chemistry Kyungpook National University Daegu South Korea
| |
Collapse
|
9
|
Filatov M, Lee S, Choi CH. Description of Sudden Polarization in the Excited Electronic States with an Ensemble Density Functional Theory Method. J Chem Theory Comput 2021; 17:5123-5139. [PMID: 34319730 DOI: 10.1021/acs.jctc.1c00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sudden polarization (SP) is one of the manifestations of electron transfer in the electronically excited states of molecules. Proposed initially to explain the unusual reactivity of photoexcited olefins, SP often occurs in the excited states of molecules possessing strongly correlated diradical ground state. Theoretical description of SP involves mixing between the singly excited and the doubly excited zwitterionic states, which makes it inaccessible with the use of the popular linear-response time-dependent density functional theory methods. In this work, an extended variant of the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, or SSR) method is applied to study SP in a number of organic diradical systems. To this end, the analytical derivative formalism is derived and implemented for the SSR(3,2) method (see the main text for explanation of the acronym), which enables the automatic geometry optimization and obtains the relaxed density matrices as well as the electron binding energies and respective Dyson's orbitals. Application of the new method to SP in the lowest singlet excited state of ethylene agrees with the results obtained previously with the use of multireference methods of wavefunction theory. A number of interesting manifestations of SP are observed, such as the charge transfer in photoexcited tetramethyleneethene (TME) diradical mediated by the vibrational motion and conductivity switching in the excited state of a donor-acceptor dyad placed in an external electric field.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
10
|
Filatov M, Lee S, Nakata H, Choi CH. Signatures of Conical Intersection Dynamics in the Time-Resolved Photoelectron Spectrum of Furan: Theoretical Modeling with an Ensemble Density Functional Theory Method. Int J Mol Sci 2021; 22:4276. [PMID: 33924097 PMCID: PMC8074317 DOI: 10.3390/ijms22084276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Hiroya Nakata
- R & D Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan;
| | - Cheol-Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
11
|
Liu F, Filatov M, Martínez TJ. Analytical derivatives of the individual state energies in ensemble density functional theory. II. Implementation on graphical processing units (GPUs). J Chem Phys 2021; 154:104108. [DOI: 10.1063/5.0041389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fang Liu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Todd J. Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
12
|
Ha JK, Kim K, Min SK. Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach. J Chem Theory Comput 2021; 17:694-702. [PMID: 33470100 DOI: 10.1021/acs.jctc.0c01261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a machine learning-assisted excited state molecular dynamics (ML-ESMD) based on the ensemble density functional theory framework. Since we represent a diabatic Hamiltonian in terms of generalized valence bond ansatz within the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS) method, we can avoid singularities near conical intersections, which are crucial in excited state molecular dynamics simulations. We train the diabatic Hamiltonian elements and their analytical gradients with the SchNet architecture to construct machine learning models, while the phase freedom of off-diagonal elements of the Hamiltonian is cured by introducing the phase-less loss function. Our machine learning models show reasonable accuracy with mean absolute errors of ∼0.1 kcal/mol and ∼0.5 kcal/mol/Å for the diabatic Hamiltonian elements and their gradients, respectively, for penta-2,4-dieniminium cation. Moreover, by exploiting the diabatic representation, our models can predict correct conical intersection structures and their topologies. In addition, our ML-ESMD simulations give almost identical result with a direct dynamics at the same level of theory.
Collapse
Affiliation(s)
- Jong-Kwon Ha
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Kicheol Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
13
|
Filatov M, Lee S, Nakata H, Choi CH. Computation of Molecular Electron Affinities Using an Ensemble Density Functional Theory Method. J Phys Chem A 2020; 124:7795-7804. [PMID: 32900199 DOI: 10.1021/acs.jpca.0c06976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The computation of electron attachment energies (electron affinities) was implemented in connection with an ensemble density functional theory method, the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method. With the use of the extended Koopmans' theorem, the electron affinities and the respective Dyson orbitals are obtained directly for the neutral molecule, thus avoiding the necessity to compute the ionized system. Together with the EKT-SSR (extended Koopmans' theorem-SSR) method for ionization potentials, which was developed earlier, EKT-SSR for electron affinities completes the implementation of the EKT-SSR formalism, which can now be used for obtaining electron detachment as well as the electron attachment energies of molecules in the ground and excited electronic states. The extended EKT-SSR method was tested in the calculation of several closed-shell molecules. For the molecules in the ground states, the EKT-SSR energies of Dyson's orbitals are virtually identical to the energies of the unoccupied orbitals in the usual single-reference spin-restricted Kohn-Sham calculations. For the molecules in the excited states, EKT-SSR predicts an increase of the most positive electron affinity by approximately the amount of the vertical excitation energy. The electron affinities of a number of diradicals were calculated with EKT-SSR and compared with the available experimental data. With the use of a standard density functional (BH&HLYP), the EKT-SSR electron affinities deviate on average by ca. 0.2 eV from the experimental data. It is expected that the agreement with the experiment can be improved by designing density functionals parametrized for ionization energies.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hiroya Nakata
- R&D Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
14
|
Filatov M, Lee S, Choi CH. Computation of Molecular Ionization Energies Using an Ensemble Density Functional Theory Method. J Chem Theory Comput 2020; 16:4489-4504. [PMID: 32421323 DOI: 10.1021/acs.jctc.0c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computation of the ionization energies and of the respective Dyson orbitals based on the use of the extended Koopmans theorem (EKT) is implemented in connection with an ensemble density functional theory (eDFT) method, the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method. The new methodology enables fast computation of the ionization energies and evaluation of the respective Dyson orbitals, the square norms of which are related with the ionization probabilities, in the ground and excited electronic states of molecules. As the application of EKT recycles the intermediate quantities from the SSR analytical energy gradient, evaluation of the ionization energies and probabilities can be carried out on-the-fly during the nonadiabatic molecular dynamics simulations. This opens up a perspective for fast theoretical simulation of the time-resolved photoelectron spectroscopy observations. In the present work, the new methodology is tested in the computation of the ionization energies and Dyson orbitals of several molecules in the ground and excited electronic states, including strongly correlated species, such as the ozone molecule, dissociating chemical bonds, and conical intersections.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
15
|
Pastorczak E, Jensen HJA, Kowalski PH, Pernal K. Generalized Valence Bond Perfect-Pairing Made Versatile Through Electron-Pairs Embedding. J Chem Theory Comput 2019; 15:4430-4439. [PMID: 31287698 DOI: 10.1021/acs.jctc.9b00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | | | - Piotr H. Kowalski
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
16
|
Wang Q, Zou J, Xu E, Pulay P, Li S. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems. J Chem Theory Comput 2018; 15:141-153. [PMID: 30481019 DOI: 10.1021/acs.jctc.8b00854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We propose an efficient general strategy for generating initial orbitals for generalized valence bond (GVB) calculations which makes routine black-box GVB calculations on large systems feasible. Two schemes are proposed, depending on whether the restricted Hartree-Fock (RHF) wave function is stable (scheme I) or not (scheme II). In both schemes, the first step is the construction of active occupied orbitals and active virtual orbitals. In scheme I, active occupied orbitals are composed of the valence orbitals (the inner core orbitals are excluded), and the active virtual orbitals are obtained from the original virtual space by requiring its maximum overlap with the virtual orbital space of the same system at a minimal basis set. In scheme II, active occupied orbitals and active virtual orbitals are obtained from the set of unrestricted natural orbitals (UNOs), which are transformed from two sets of unrestricted HF spatial orbitals. In the next step, the active occupied orbitals and active virtual ones are separately transformed to localized orbitals. Localized occupied and virtual orbital pairs are formed using the Kuhn-Munkres (KM) algorithm and are used as the initial guess for the GVB orbitals. The optimized GVB wave function is obtained using the second-order self-consistent-field algorithm in the GAMESS program. With this procedure, GVB energies have been obtained for the lowest singlet and triplet states of polyacenes (up to decacene with 96 pairs) and the singlet ground state of two di-copper-oxygen-ammonia complexes. We have also calculated the singlet-triplet gaps for some polyacenes and the relative energy between two di-copper-oxygen-ammonia complexes with the block-correlated second-order perturbation theory based on the GVB reference.
Collapse
Affiliation(s)
- Qingchun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Jingxiang Zou
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Enhua Xu
- Graduate School of Science, Technology, and Innovation , Kobe University , Nada-ku, Kobe 657-8501 , Japan
| | - Peter Pulay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
17
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
18
|
Filatov M, Liu F, Martínez TJ. Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism. J Chem Phys 2018; 147:034113. [PMID: 28734302 DOI: 10.1063/1.4994542] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The state-averaged (SA) spin restricted ensemble referenced Kohn-Sham (REKS) method and its state interaction (SI) extension, SI-SA-REKS, enable one to describe correctly the shape of the ground and excited potential energy surfaces of molecules undergoing bond breaking/bond formation reactions including features such as conical intersections crucial for theoretical modeling of non-adiabatic reactions. Until recently, application of the SA-REKS and SI-SA-REKS methods to modeling the dynamics of such reactions was obstructed due to the lack of the analytical energy derivatives. In this work, the analytical derivatives of the individual SA-REKS and SI-SA-REKS energies are derived. The final analytic gradient expressions are formulated entirely in terms of traces of matrix products and are presented in the form convenient for implementation in the traditional quantum chemical codes employing basis set expansions of the molecular orbitals. The implementation and benchmarking of the derived formalism will be described in a subsequent article of this series.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| | - Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
19
|
Filatov M, Martínez TJ, Kim KS. Description of ground and excited electronic states by ensemble density functional method with extended active space. J Chem Phys 2018; 147:064104. [PMID: 28810777 DOI: 10.1063/1.4996873] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kwang S Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
20
|
Filatov M, Liu F, Kim KS, Martínez TJ. Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs. J Chem Phys 2016; 145:244104. [DOI: 10.1063/1.4972174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Hu MX, Xu T, Momen R, Huan G, Kirk SR, Jenkins S, Filatov M. A QTAIM and stress tensor investigation of the torsion path of a light-driven fluorene molecular rotary motor. J Comput Chem 2016; 37:2588-96. [PMID: 27671359 DOI: 10.1002/jcc.24487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022]
Abstract
The utility of the QTAIM/stress tensor analysis method for characterizing the photoisomerization of light driven molecular rotary machines is investigated on the example of the torsion path in fluorene molecular motor. The scalar and vector descriptors of QTAIM/stress tensor reveal additional information on the bonding interactions between the rotating units of the motor, which cannot be obtained from the analysis of the ground and excited state potential energy surfaces. The topological features of the fluorene motor molecular graph display that, upon the photoexcitation a certain increase in the torsional stiffness of the rotating bond can be attributed to the increasing topological stability of the rotor carbon atom attached to the rotation axle. The established variations in the torsional stiffness of the rotating bond may cause transfer of certain fraction of the torsional energy to other internal degrees of freedom, such as the pyramidalization distortion. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Xing Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Tianlv Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Roya Momen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guo Huan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Steven R Kirk
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Samantha Jenkins
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.,Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Michael Filatov
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Korea
| |
Collapse
|