1
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
2
|
Kunfi A, Bernadett Vlocskó R, Keresztes Z, Mohai M, Bertóti I, Ábrahám Á, Kiss É, London G. Photoswitchable Macroscopic Solid Surfaces Based On Azobenzene-Functionalized Polydopamine/Gold Nanoparticle Composite Materials: Formation, Isomerization and Ligand Exchange. Chempluschem 2020; 85:797-805. [PMID: 31967410 DOI: 10.1002/cplu.201900674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Indexed: 12/21/2022]
Abstract
The facile preparation of dynamic interfaces is presented based on the combination of photoisomerizable azobenzenes and polydopamine (PDA)/Au nanoparticle composite materials. Azobenzenes with different spacer lengths (C3 , C6 ) and surface-binding groups (SH, NH2 ) were synthesized. The polymer layer on macroscopic quartz surface was prepared by the facile aerobic autopolymerisation of dopamine hydrochloride under basic conditions. The presence of redox-active catechol moieties meant that gold nanoparticles were formed on the polymer surface. The obtained UV-Vis spectroscopic results confirmed that following their successful assembly, the switching of azobenzenes on PDA/Au was not affected by the surface binding group and the spacer length of the azobenzene molecules under the measurement conditions. Furthermore, facilitated by the curved nature of the Au particles, the surface-bound azobenzene layer could be reconstructed by ligand-exchange processes, and the photochemical characterization of the mixed layer was performed.
Collapse
Affiliation(s)
- Attila Kunfi
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Department of Organic Chemistry, University of Szeged, Dóm tér 8, 6720, Szeged, Hungary
| | - Rita Bernadett Vlocskó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Zsófia Keresztes
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Miklós Mohai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Imre Bertóti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Ágnes Ábrahám
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Laboratory of Interfaces and Nanostructures, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Gábor London
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| |
Collapse
|
3
|
Peng T, Miao J, Gao Z, Zhang L, Gao Y, Fan C, Li D. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703510. [PMID: 29457350 DOI: 10.1002/smll.201703510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis.
Collapse
Affiliation(s)
- Tianhuan Peng
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjian Miao
- Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhaoshuai Gao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Gao
- Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Di Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|