1
|
Yamashita K, Nakayama K, Komatsu K, Ohhara T, Munakata K, Hattori T, Sano-Furukawa A, Kagi H. The hydrogen-bond network in sodium chloride tridecahydrate: analogy with ice VI. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:414-426. [PMID: 37703290 DOI: 10.1107/s2052520623007199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The structure of a recently found hyperhydrated form of sodium chloride (NaCl·13H2O and NaCl·13D2O) has been determined by in situ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo-symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. An example is presented here for further insights into a hydrogen-bond network containing ionic species.
Collapse
Affiliation(s)
- Keishiro Yamashita
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Nakayama
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Komatsu
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ohhara
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Koji Munakata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Building, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Takanori Hattori
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Asami Sano-Furukawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Xie ZM, Wang TW, Du YB, Lu ZJ, Wu XW, Chen YB, Zhang JG. Structural, vibrational and electronic properties of nitrogen-rich 2,4,6-triazide-1,3,5-triazine under high pressure. J Mol Model 2023; 29:257. [PMID: 37468798 DOI: 10.1007/s00894-023-05651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT AND RESULTS 2,4,6-triazide-1,3,5-triazine (TAT) has received widespread attention for its great potential to synthesize or convert to nitrogen-rich high energy density materials (HEDMs). The TAT structure alteration in the compression process up to 30 GPa has characteristics as follows: (a) [N3] groups straighten; (b) [N3] groups gather toward the six-membered C-N heterocycles. At about 5 GPa, Raman peak split at 700 cm-1 was observed both in calculation and in-situ Raman experiment, which is caused by pressure-induced intramolecular stress. Besides, the broad band of the amorphous two-dimensional C=N network (centered at 1630 cm-1) occurred at about 12 GPa. Meantime, the study on electronic features suggests the pressure-induced deformation in TAT molecular structure cause the discontinuous change of band gap at about 4.5 GPa and 8.0 GPa, respectively. COMPUTATIONAL AND THEORETICAL TECHNIQUES The static compression process of TAT was explored in the range of 0-30 GPa by using dispersion corrected density functional theory (DFT-D) calculations combined with in-situ Raman experiment. The GGA/PBE+G06 method that has less errors than other calculation methods was used to predict the geometry structure, vibrational properties and electronic structure of TAT under pressure.
Collapse
Affiliation(s)
- Zhi-Ming Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ting-Wei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu-Bing Du
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Wei Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ya-Bin Chen
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Perturbative vibration of the coupled hydrogen-bond (O:H-O) in water. Adv Colloid Interface Sci 2022; 310:102809. [PMID: 36356480 DOI: 10.1016/j.cis.2022.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Perturbation Raman spectroscopy has underscored the hydrogen bond (O:H-O or HB) cooperativity and polarizability (HBCP) for water, which offers a proper parameter space for the performance of the HB and electrons in the energy-space-time domains. The OO repulsive coupling drives the O:H-O segmental length and energy to relax cooperatively upon perturbation. Mechanical compression shortens and stiffens the O:H nonbond while lengthens and softens the HO bond associated with polarization. However, electrification by an electric field or charge injection, or molecular undercoordination at a surface, relaxes the O:H-O in a contrasting way to the compression with derivation of the supersolid phase that is viscoelastic, less dense, thermally diffusive, and mechanically and thermally more stable. The HO bond exhibits negative thermal expansivity in the liquid and the ice-I phase while its length responds in proportional to temperature in the quasisolid phase. The O:H-O relaxation modifies the mass densities, phase boundaries, critical temperatures and the polarization endows the slipperiness of ice and superfluidity of water at the nanometer scale. Protons injection by acid solvation creates the H↔H anti-HB and introduction of electron lone pairs derives the O:⇔:O super-HB into the solutions of base or H2O2 hydrogen-peroxide. The repulsive H↔H and O:⇔:O interactions lengthen the solvent HO bond while the solute HO bond contracts because its bond order loss. Differential phonon spectroscopy quantifies the abundance, structure order, and stiffness of the bonds transiting from the mode of pristine water to the perturbed states. The HBCP and the perturbative spectroscopy have enabled the dynamic potentials for the relaxing O:H-O bond. Findings not only amplified the power of the Raman spectroscopy but also substantiated the understanding of anomalies of water subjecting to perturbation.
Collapse
|
4
|
Li L, Sun W, Tong Z, Bo M, Ken Ostrikov K, Huang Y, Sun CQ. Discriminative ionic polarizability of alkali halide solutions: Hydration cells, bond distortion, surface stress, and viscosity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Interaction of solute and water molecules in cryoprotectant mixture during vitrification and crystallization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
|
7
|
Sun CQ. Water electrification: Principles and applications. Adv Colloid Interface Sci 2020; 282:102188. [PMID: 32610204 DOI: 10.1016/j.cis.2020.102188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
Deep engineering of liquid water by charge and impurity injection, charged support, current flow, hydrophobic confinement, or applying a directional field has becoming increasingly important to the mankind toward overcoming energy and environment crisis. One can mediate the processes or temperatures of molecular evaporation for clean water harvesting, HO bond dissociation for H2 fuel generation, solidification for living-organism cryopreservation, structure stiffening for bioengineering, etc., with mechanisms being still puzzling. We show that the framework of "hydrogen bonding and electronic dynamics" has substantiated the progress in the fundamental issues and the aimed engineering. The segmental disparity of the coupled hydrogen bond (O:HO or HB with ":" being lone pair of oxygen) resolves their specific-heat curves and turns out a quasisolid phase (QS, bound at -15 and 4 °C). Electrification shows dual functionality that not only aligns, orders, polarizes water molecules but also stretches the O:HO bond. The O:HO segmental cooperative relaxation and polarization shift the QS boundary through Einstein's relation, ΔΘDx ∝ Δωx, resulting in a gel-like, viscoelastic, and stable supersolid phase with raised melting point Tm and lowered temperatures for vaporization TV and ice nucleation TN. The supersolidity and electro structure ordering provide additional forces to reinforce Armstrong's water bridge. QS dispersion and the secondary effect of electrification such as compression define the TN for Dufour's electro-freezing. The TV depression, surface stress disruption, and electrostatic attraction raise Asakawa's molecular evaporability. Composition of opposite, compatible fields eases the HO dissociation and soil wetting. Progress evidences not only the essentiality of the coupled O:HO bond theory but also the feasibility of engineering water and solutions by programmed electrification.
Collapse
Affiliation(s)
- Chang Q Sun
- School of EEE, Nanyang Technological University, 639798, Singapore; School of Material Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
8
|
|
9
|
Gao S, Huang Y, Zhang X, Sun CQ. Unexpected Solute Occupancy and Anisotropic Polarizability in Lewis Basic Solutions. J Phys Chem B 2019; 123:8512-8518. [DOI: 10.1021/acs.jpcb.9b05745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyan Gao
- School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yongli Huang
- School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chang Q. Sun
- NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
10
|
Yang X, Peng C, Li L, Bo M, Sun Y, Huang Y, Sun CQ. Multifield-resolved phonon spectrometrics: structured crystals and liquids. PROG SOLID STATE CH 2019. [DOI: 10.1016/j.progsolidstchem.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Sun CQ, Huang Y, Zhang X. Hydration of Hofmeister ions. Adv Colloid Interface Sci 2019; 268:1-24. [PMID: 30921543 DOI: 10.1016/j.cis.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Water dissolves salt into ions and then hydrates the ions to form an aqueous solution. Hydration of ions deforms the hydrogen bonding network and triggers the solution with what the pure water never shows such as conductivity, molecular diffusivity, thermal stability, surface stress, solubility, and viscosity, having enormous impact to many branches in biochemistry, chemistry, physics, and energy and environmental industry sectors. However, regulations for the solute-solute-solvent interactions are still open for exploration. From the perspective of the screened ionic polarization and O:H-O bond relaxation, this treatise features the recent progress and a perspective in understanding the hydration dynamics of Hofmeister ions in the typical YI, NaX, ZX2, and NaT salt solutions (Y = Li, Na, K, Rb, Cs; X = F, Cl, Br, I; Z = Mg, Ca, Ba, Sr; T = ClO4, NO3, HSO4, SCN). Phonon spectrometric analysis turned out the f(C) number fraction of bonds transition from the mode of deionized water to the hydrating. The linear f(C) ∝ C form features the invariant hydration volume of small cations that are fully-screened by their hydration H2O dipoles. The nonlinear f(C) ∝ 1 - exp.(-C/C0) form describes that the number insufficiency of the ordered hydrating H2O dipoles partially screens the anions. Molecular anions show stronger yet shorter electric field of dipoles. The screened ionic polarization, inter-solute interaction, and O:H-O bond transition unify the solution conductivity, surface stress, viscosity, and critical energies for phase transition.
Collapse
|
12
|
Sun CQ, Yao C, Sun Y, Liu X, Fang H, Huang Y. (H, Li)Cl and LiOH hydration: Surface tension, solution conductivity and viscosity, and exothermic dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Li F, Wang Y, Sun C, Li Z, Men Z. Spectra study hydrogen bonds dynamics of water molecules at NaOH solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Salzmann CG. Advances in the experimental exploration of water's phase diagram. J Chem Phys 2019; 150:060901. [PMID: 30770019 DOI: 10.1063/1.5085163] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Water's phase diagram displays enormous complexity with currently 17 experimentally confirmed polymorphs of ice and several more predicted computationally. For almost 120 years, it has been a stomping ground for scientific discovery, and ice research has often been a trailblazer for investigations into a wide range of materials-related phenomena. Here, the experimental progress of the last couple of years is reviewed, and open questions as well as future challenges are discussed. The specific topics include (i) the polytypism and stacking disorder of ice I, (ii) the mechanism of the pressure amorphization of ice I, (iii) the emptying of gas-filled clathrate hydrates to give new low-density ice polymorphs, (iv) the effects of acid/base doping on hydrogen-ordering phase transitions as well as (v) the formation of solid solutions between salts and the ice polymorphs, and the effect this has on the appearance of the phase diagram. In addition to continuing efforts to push the boundaries in terms of the extremes of pressure and temperature, the exploration of the "chemical" dimensions of ice research appears to now be a newly emerging trend. It is without question that ice research has entered a very exciting era.
Collapse
Affiliation(s)
- Christoph G Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
15
|
Sun CQ. Unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys Chem Chem Phys 2019; 21:2234-2250. [PMID: 30656293 DOI: 10.1039/c8cp06910g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Charge injection in terms of lone pairs ':', protons, and ions upon acid and base solvation mediates the hydrogen bonding network and properties of Lewis solutions, and is ubiquitously important in many subject areas of Chemical Physics. This work features the recent progress and future trends in this aspect with a focus on the solute-solvent interactions and hydrogen bond (O:H-O or HB) transition from the vibration mode of ordinary water to the hydrating states. A combination of the O:H-O bond cooperativity notion, differential phonon spectrometrics, calorimetric detection, and quantum computations clarified the solute capabilities of O:H-O bond transition in HX and YOH (X = Cl, Br, I and Y = Li, Na, K) solutions. The H+ and the lone pair do not stay alone to move or shuttle freely between adjacent H2O molecules, but they are attached to a H2O molecule to form (H3O+ and OH-)·4H2O tetrahedral motifs, which transits an O:H-O bond into the H↔H anti-HB point breaker in acidic solutions and into the O:⇔:O super-HB compressor and polarizer in basic solutions, respectively. H↔H disrupts the solvent network and surface stress, having the same effect of liquid heating on HB bond relaxation and thermal fluctuation on surface stress. The O:⇔:O compression lengthens and weakens the solute H-O bond, which heats up the solution during solvation. The H-O bonds due to H3O+ contract by 3% and due to OH- shrink by 10%. The Y+ and X- ions perform in the same manner as they do in salt solutions to form hydration shells through electrostatic polarization and hydrating H2O dipolar screen shielding. Focusing more on the O:H-O bond transition would be even more promising and revealing than on the manner and mobility of lone pair and proton transportation.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
16
|
Abstract
Supersolidity of ice, which was proposed in 2013 and intensively verified since then [C. Q. Sun et al., Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors, J. Phys. Chem. Lett., 2013, 4, 2565-2570; C. Q. Sun et al., Density and phonon-stiffness anomalies of water and ice in the full temperature range, J. Phys. Chem. Lett., 2013, 4, 3238-3244], refers to the water molecules being polarized by molecular undercoordination, which is associated with the skin of bulk ice, nanobubbles, and nanodroplets (often called confinement), or by the electrostatic field of ions in salt solutions [X. Zhang et al., Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating, Phys. Chem. Chem. Phys., 2014, 16(45), 24666-24671; C. Q. Sun et al., (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities, J. Phys. Chem. B, 2018, 122(3), 1228-1238]. From the perspective of hydrogen bond (O:H-O or HB with ":" representing the lone pairs on O2-) cooperative relaxation and polarization, this review features the recent progress and recommends future trends in understanding the bond-electron-phonon correlation in the supersolid phase. Supersolidity is characterized by a shorter and stiffer H-O bond, longer and softer O:H nonbond, deeper O 1s energy band, and longer photoelectron and phonon lifetimes. The supersolid phase is less dense, viscoelastic, and mechanically and thermally more stable. Furthermore, O:H-O bond cooperative relaxation offsets the boundaries of structural phases and increases the melting point while lowering the freezing temperature of ice, which is known as supercooling and superheating.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
17
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
|
19
|
Dai Y, Qi Y. Pressure-induced phase transition of 4-aminobenzonitrile: the formation and enhancement of N-H⋯N weak hydrogen bonds. RSC Adv 2018; 8:4588-4594. [PMID: 35539561 PMCID: PMC9077820 DOI: 10.1039/c8ra00020d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 12/02/2022] Open
Abstract
A reversible pressure-induced structural phase transition of 4-aminobenzonitrile was found at about 0.3 GPa by conducting in situ high-pressure synchrotron angle-dispersive X-ray diffraction (ADXRD) experiments. The discontinuous changes of Raman modes at 0.2 GPa confirmed the occurrence of phase transition. In situ high-pressure Raman spectra indicated that the molecular arrangement and intermolecular interactions changed abruptly. The process of this phase transition continued up to about 1.0 GPa. When the pressure reached 1.1 GPa, the initial N-H⋯N interaction transformed into a new weak hydrogen bond, which was enhanced by further compression. The ab initio calculations and Hirshfeld surfaces were used to illustrate the above views. This study gives an example that demonstrates that the pressure can induce the formation of hydrogen bonds, which contributes to the development of supramolecular chemistry.
Collapse
Affiliation(s)
- Yuxiang Dai
- Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University Shenyang 110819 China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University Shenyang 110819 China
| | - Yang Qi
- Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University Shenyang 110819 China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University Shenyang 110819 China
| |
Collapse
|
20
|
Sun CQ, Chen J, Gong Y, Zhang X, Huang Y. (H, Li)Br and LiOH Solvation Bonding Dynamics: Molecular Nonbond Interactions and Solute Extraordinary Capabilities. J Phys Chem B 2018; 122:1228-1238. [DOI: 10.1021/acs.jpcb.7b09269] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chang Q. Sun
- Chongqing
Key Laboratory of Extraordinary Coordination Bond and Advanced Materials
Technologies (EBEAM), Yangtze Normal University, Chongqing 408100, China
- School
EEE, Nanyang Technological University, Singapore 639798
| | - Jiasheng Chen
- Key
Laboratory of Low-Dimensional Materials and Application Technologies
(Ministry of Education) and School of Materials, Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yinyan Gong
- Institute
of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzou 310018, China
| | - Xi Zhang
- Institute
of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongli Huang
- Key
Laboratory of Low-Dimensional Materials and Application Technologies
(Ministry of Education) and School of Materials, Science and Engineering, Xiangtan University, Hunan 411105, China
| |
Collapse
|
21
|
|
22
|
NaX solvation bonding dynamics:hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhou Y, Gong Y, Huang Y, Ma Z, Zhang X, Sun CQ. Fraction and stiffness transition from the H O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Chen JS, Yao C, Liu XJ, Zhang X, Sun CQ, Huang YL. H2
O2
and HO−
Solvation Dynamics: Solute Capabilities and Solute-Solvent Molecular Interactions. ChemistrySelect 2017. [DOI: 10.1002/slct.201701334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiasheng S. Chen
- Key Laboratory of Low-dimensional Materials and Application Technology (Ministry of Education); School of Materials Science and Engineering; Xiangtan University; Xiangtan - 411105 China
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM); Yangtze Normal University; Chongqing - 408100 China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM); Yangtze Normal University; Chongqing - 408100 China
| | - Xinjuan J. Liu
- Institute for Coordination Bond Engineering; China Jiliang University; Hangzhou - 310018 China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering; Shenzhen University; Shenzhen - 518060 China
| | - Chang Q. Sun
- NOVITAS, School of EEE; Nanyang Technological University; Singapore - 639798
| | - Yongli L. Huang
- Key Laboratory of Low-dimensional Materials and Application Technology (Ministry of Education); School of Materials Science and Engineering; Xiangtan University; Xiangtan - 411105 China
| |
Collapse
|
25
|
Li F, Li Z, Wang S, Li S, Men Z, Ouyang S, Sun C. Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:425-430. [PMID: 28475984 DOI: 10.1016/j.saa.2017.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
The Raman spectra of different concentrations of NaOH solutions have been successfully obtained at normal pressure by cooling. The results indicate that the icing point and the ice phase transition temperature of NaOH solutions decrease with increasing concentrations. Particularly, the different concentrations (2, 4, 6 or 8 and 12M) take place the liquid- III- Ih, liquid- V- Ih, liquid- VI- XV and liquid- IX- VI phase transition, respectively. In addition, the three peaks of around 3524, 3580 and 3624cm-1 appear spectra of the NaOH solutions at low temperature.
Collapse
Affiliation(s)
- Fabing Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Zhanlong Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shenghan Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shuo Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shunli Ouyang
- Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science & Technology, Baotou 014010, China.
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
26
|
Zhang X, Zhou Y, Gong Y, Huang Y, Sun C. Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zeng Q, Yao C, Wang K, Sun CQ, Zou B. Room-temperature NaI/H2O compression icing: solute–solute interactions. Phys Chem Chem Phys 2017; 19:26645-26650. [DOI: 10.1039/c7cp03919k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
H–O bond energy governs the PCx for Na/H2O liquid–VI–VII phase transition. Solute concentration affects the path of phase transitions differently with the solute type. Solute–solute interaction lessens the PC2 sensitivity to compression. The PC1 goes along the liquid–VI boundary till the triple phase joint.
Collapse
Affiliation(s)
- Qingxin Zeng
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 4081410
- China
| | - Kai Wang
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Chang Q. Sun
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 4081410
- China
- NOVITAS, Nanyang Technological University
| | - Bo Zou
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
28
|
Zhou Y, Wu D, Gong Y, Ma Z, Huang Y, Zhang X, Sun CQ. Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|