1
|
Kasuga M, Mutsuro-Aoki H, Ando T, Tamura K. Molecular Anatomy of the Class I Ligase Ribozyme for Elucidation of the Activity-Generating Unit. BIOLOGY 2023; 12:1012. [PMID: 37508441 PMCID: PMC10376402 DOI: 10.3390/biology12071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The class I ligase ribozyme consists of 121 nucleotides and shows a high catalytic rate comparable to that found in natural proteinaceous polymerases. In this study, we aimed to identify the smaller active unit of the class I ligase ribozyme comprising ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Based on the three-dimensional structure of the class I ligase ribozyme, mutants were prepared and their ligation activities were analyzed. Sufficient ligation activity was maintained even when shortening to 94 nucleotides. However, because it would be difficult to approach the target of ~50 nucleotides by removing only the partial structure, the class I ligase ribozyme was then split into two molecules. The ligation activity was maintained even when splitting into two molecules of 55 and 39 nucleotides. Using a system with similar split ribozymes, we analyzed the ligation activity of mutants C30, C47, and A71, which have been previously identified as the positions that contribute to catalytic activity, and discussed the structural basis of the activity of these bases. Our findings suggest the rationale for the class I ligase ribozyme's assembling from multiple fragments that would be achievable with prebiotic synthesis.
Collapse
Affiliation(s)
- Miho Kasuga
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Yoon S, Ollie E, York DM, Piccirilli JA, Harris ME. Rapid Kinetics of Pistol Ribozyme: Insights into Limits to RNA Catalysis. Biochemistry 2023. [PMID: 37294744 DOI: 10.1021/acs.biochem.3c00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pistol ribozyme (Psr) is a distinct class of small endonucleolytic ribozymes, which are important experimental systems for defining fundamental principles of RNA catalysis and designing valuable tools in biotechnology. High-resolution structures of Psr, extensive structure-function studies, and computation support a mechanism involving one or more catalytic guanosine nucleobases acting as a general base and divalent metal ion-bound water acting as an acid to catalyze RNA 2'-O-transphosphorylation. Yet, for a wide range of pH and metal ion concentrations, the rate of Psr catalysis is too fast to measure manually and the reaction steps that limit catalysis are not well understood. Here, we use stopped-flow fluorescence spectroscopy to evaluate Psr temperature dependence, solvent H/D isotope effects, and divalent metal ion affinity and specificity unconstrained by limitations due to fast kinetics. The results show that Psr catalysis is characterized by small apparent activation enthalpy and entropy changes and minimal transition state H/D fractionation, suggesting that one or more pre-equilibrium steps rather than chemistry is rate limiting. Quantitative analyses of divalent ion dependence confirm that metal aquo ion pKa correlates with higher rates of catalysis independent of differences in ion binding affinity. However, ambiguity regarding the rate-limiting step and similar correlation with related attributes such as ionic radius and hydration free energy complicate a definitive mechanistic interpretation. These new data provide a framework for further interrogation of Psr transition state stabilization and show how thermal instability, metal ion insolubility at optimal pH, and pre-equilibrium steps such as ion binding and folding limit the catalytic power of Psr suggesting potential strategies for further optimization.
Collapse
Affiliation(s)
- Suhyun Yoon
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Edward Ollie
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Wu LF, Liu Z, Roberts SJ, Su M, Szostak JW, Sutherland JD. Template-Free Assembly of Functional RNAs by Loop-Closing Ligation. J Am Chem Soc 2022; 144:13920-13927. [PMID: 35880790 PMCID: PMC9354263 DOI: 10.1021/jacs.2c05601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first ribozymes are thought to have emerged at a time when RNA replication proceeded via nonenzymatic template copying processes. However, functional RNAs have stable folded structures, and such structures are much more difficult to copy than short unstructured RNAs. How can these conflicting requirements be reconciled? Also, how can the inhibition of ribozyme function by complementary template strands be avoided or minimized? Here, we show that short RNA duplexes with single-stranded overhangs can be converted into RNA stem loops by nonenzymatic cross-strand ligation. We then show that loop-closing ligation reactions enable the assembly of full-length functional ribozymes without any external template. Thus, one can envisage a potential pathway whereby structurally complex functional RNAs could have formed at an early stage of evolution when protocell genomes might have consisted only of collections of short replicating oligonucleotides.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.,Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Jack W Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
4
|
Becskei A, Rahaman S. The life and death of RNA across temperatures. Comput Struct Biotechnol J 2022; 20:4325-4336. [PMID: 36051884 PMCID: PMC9411577 DOI: 10.1016/j.csbj.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature is an environmental condition that has a pervasive effect on cells along with all the molecules and reactions in them. The mechanisms by which prototypical RNA molecules sense and withstand heat have been identified mostly in bacteria and archaea. The relevance of these phenomena is, however, broader, and similar mechanisms have been recently found throughout the tree of life, from sex determination in reptiles to adaptation of viral RNA polymerases, to genetic disorders in humans. We illustrate the temperature dependence of RNA metabolism with examples from the synthesis to the degradation of mRNAs, and review recently emerged questions. Are cells exposed to greater temperature variations and gradients than previously surmised? How do cells reconcile the conflicting thermal stability requirements of primary and tertiary structures of RNAs? To what extent do enzymes contribute to the temperature compensation of the reaction rates in mRNA turnover by lowering the energy barrier of the catalyzed reactions? We conclude with the ecological, forensic applications of the temperature-dependence of RNA degradation and the biotechnological aspects of mRNA vaccine production.
Collapse
|
5
|
Kim HJ, Benner SA. Abiotic Synthesis of Nucleoside 5'-Triphosphates with Nickel Borate and Cyclic Trimetaphosphate (CTMP). ASTROBIOLOGY 2021; 21:298-306. [PMID: 33533695 DOI: 10.1089/ast.2020.2264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While nucleoside 5'-triphosphates are precursors for RNA in modern biology, the presumed difficulty of making these triphosphates on Hadean Earth has caused many prebiotic researchers to consider other activated species for the prebiotic synthesis of RNA. We report here that nickel(II), in the presence of borate, gives substantial amounts (2-3%) of nucleoside 5'-triphosphates upon evaporative heating in the presence of urea, salts, and cyclic trimetaphosphate (CTMP). Also recovered are nucleoside 5'-diphosphates and nucleoside 5'-monophosphates, both likely arising from 5'-triphosphate intermediates. The total level of 5'-phosphorylation is typically 30%. Borate enhances the regiospecificity of phosphorylation, with increased amounts of other phosphorylated species seen in its absence. Experimentally supported paths are already available to make nucleosides in environments likely to have been present on Hadean Earth soon after a midsized 1021 to 1023 kg impactor, which would also have delivered nickel to the Hadean surface. Further, sources of prebiotic CTMP continue to be proposed. Thus, these results fill in one of the few remaining steps needed to demystify the prebiotic synthesis of RNA and support a continuous model from atmospheric components to oligomeric RNA that is lacking only a mechanism to obtain homochirality in the product RNA.
Collapse
Affiliation(s)
- Hyo-Joong Kim
- Foundation for Applied Molecular Evolution and Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution and Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| |
Collapse
|
6
|
Arriola JT, Müller UF. A combinatorial method to isolate short ribozymes from complex ribozyme libraries. Nucleic Acids Res 2020; 48:e116. [PMID: 33035338 PMCID: PMC7672470 DOI: 10.1093/nar/gkaa834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
In vitro selections are the only known methods to generate catalytic RNAs (ribozymes) that do not exist in nature. Such new ribozymes are used as biochemical tools, or to address questions on early stages of life. In both cases, it is helpful to identify the shortest possible ribozymes since they are easier to deploy as a tool, and because they are more likely to have emerged in a prebiotic environment. One of our previous selection experiments led to a library containing hundreds of different ribozyme clusters that catalyze the triphosphorylation of their 5'-terminus. This selection showed that RNA systems can use the prebiotically plausible molecule cyclic trimetaphosphate as an energy source. From this selected ribozyme library, the shortest ribozyme that was previously identified had a length of 67 nucleotides. Here we describe a combinatorial method to identify short ribozymes from libraries containing many ribozymes. Using this protocol on the library of triphosphorylation ribozymes, we identified a 17-nucleotide sequence motif embedded in a 44-nucleotide pseudoknot structure. The described combinatorial approach can be used to analyze libraries obtained by different in vitro selection experiments.
Collapse
Affiliation(s)
- Joshua T Arriola
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Piette BMAG, Heddle JG. A Peptide-Nucleic Acid Replicator Origin for Life. Trends Ecol Evol 2020; 35:397-406. [PMID: 32294421 DOI: 10.1016/j.tree.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Evolution requires self-replication. But, what was the very first self-replicator directly ancestral to all life? The currently favoured RNA World theory assigns this role to RNA alone but suffers from a number of seemingly intractable problems. Instead, we suggest that the self-replicator consisted of both peptides and nucleic acid strands. Such a nucleopeptide replicator is more feasible both in the light of the replication machinery currently found in cells and the complexity of the evolutionary path required to reach them. Recent theoretical and mathematical work supports this idea and provide a blueprint for future investigations.
Collapse
Affiliation(s)
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Tjhung KF, Shokhirev MN, Horning DP, Joyce GF. An RNA polymerase ribozyme that synthesizes its own ancestor. Proc Natl Acad Sci U S A 2020; 117:2906-2913. [PMID: 31988127 PMCID: PMC7022166 DOI: 10.1073/pnas.1914282117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The RNA-based organisms from which modern life is thought to have descended would have depended on an RNA polymerase ribozyme to copy functional RNA molecules, including copying the polymerase itself. Such a polymerase must have been capable of copying structured RNAs with high efficiency and high fidelity to maintain genetic information across successive generations. Here the class I RNA polymerase ribozyme was evolved in vitro for the ability to synthesize functional ribozymes, resulting in the markedly improved ability to synthesize complex RNAs using nucleoside 5'-triphosphate (NTP) substrates. The polymerase is descended from the class I ligase, which contains the same catalytic core as the polymerase. The class I ligase can be synthesized by the improved polymerase as three separate RNA strands that assemble to form a functional ligase. The polymerase also can synthesize the complement of each of these three strands. Despite this remarkable level of activity, only a very small fraction of the assembled ligases retain catalytic activity due to the presence of disabling mutations. Thus, the fidelity of RNA polymerization should be considered a major impediment to the construction of a self-sustained, RNA-based evolving system. The propagation of heritable information requires both efficient and accurate synthesis of genetic molecules, a requirement relevant to both laboratory systems and the early history of life on Earth.
Collapse
Affiliation(s)
- Katrina F Tjhung
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute, La Jolla, CA 92037
| | - Maxim N Shokhirev
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute, La Jolla, CA 92037
| | - David P Horning
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute, La Jolla, CA 92037
| | - Gerald F Joyce
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute, La Jolla, CA 92037
| |
Collapse
|
9
|
Affiliation(s)
- Matthew A. Pasek
- School of Geosciences, University of South Florida, 4202 E. Fowler Avenue NES 204, Tampa, Florida 33620, United States
| |
Collapse
|
10
|
Ranjan S, Todd ZR, Sutherland JD, Sasselov DD. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. ASTROBIOLOGY 2018; 18:1023-1040. [PMID: 29627997 PMCID: PMC6225604 DOI: 10.1089/ast.2017.1770] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/19/2018] [Indexed: 05/16/2023]
Abstract
A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS-, HSO3-, SO32-) available in surficial aquatic reservoirs on early Earth due to outgassing of SO2 and H2S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO2-derived anions, but not H2S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Cantine MD, Fournier GP. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. ORIGINS LIFE EVOL B 2017; 48:35-54. [PMID: 28685374 DOI: 10.1007/s11084-017-9542-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.
Collapse
Affiliation(s)
- Marjorie D Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|