1
|
Asath Murphy MS, Jovitha Jane D, Sahaya Leenus S, Robin RS, Palanichamy J, Kalivel P. Electrochemical treatment of textile wastewater using copper electrodes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:971-980. [PMID: 37888954 DOI: 10.1080/10934529.2023.2274257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
The conventional electrode aluminum used in electrocoagulation (EC) for the textile wastewater undergoes pitting type of corrosion, so dissolution of the same is very high during electrolysis. This research focuses on the treatment of real-time textile effluent with copper electrodes that corrode uniformly during electrolysis, with optimizing operating parameters for high color removal efficiency (CRE%). The sludge acquired was analyzed by XPS and XRD to study the mechanism of dye removal. The treated effluent was subjected to phytotoxicity analysis using Vigna radiata to study the toxicity effect of the intermediary products. 98.6% of CRE was attained in treating the effluent with copper electrodes. XPS and XRD results showed that both Cu(OH)2 and CuO served as coagulants in the dye removal. The phytotoxicity results showed that the percentage of germination, shoot and root lengths of Vigna radiata in the treated effluent were similar to the results obtained for the control.
Collapse
Affiliation(s)
- M S Asath Murphy
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - D Jovitha Jane
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - S Sahaya Leenus
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Riju S Robin
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | - Parameswari Kalivel
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
2
|
Smitha Rose C, Suthan T, Mary Delphine S, Wise Bell CC, Lekshmi NP. Studies on crystal growth, experimental, structural, DFT, optical, thermal and biological studies of 3-hydroxy-4-methoxybenzaldehyde single crystals. Heliyon 2023; 9:e15219. [PMID: 37095901 PMCID: PMC10122042 DOI: 10.1016/j.heliyon.2023.e15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The organic 3-hydroxy-4-methoxybenzaldehyde single crystal has been grown by the slow evaporation technique. Single crystal X-ray diffraction (XRD) study shows that the grown crystal belongs to a monoclinic crystal system with centrosymmetric space group P21/c. The spectral analysis of 3-hydroxy-4-methoxybenzaldehyde calculations was performed with the help of DFT at the B3LYP/6-311 + G(d,p) level of theory. The experimental results of FTIR and FT-Raman were compared with the computational results. Detailed interpretations of the vibrational spectra were carried out with the aid of vibrational energy distribution analysis using potential energy distribution (PED) analysis and vibrational wavenumber scaled by the WLS (Wavenumber Linear Scaling) method. The natural bond orbital (NBO) analysis was carried out to identify intramolecular hydrogen bonding. The optical properties of the grown crystal were analyzed by UV-Visible studies. Photoluminescence studies show that the high-intensity peak observed around 410 nm. The laser damage threshold value of the grown crystal has been determined using an Nd:YAG laser operating at 1064 nm. The HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) was used to identify the energy gap. Hirshfeld Surface (HS) analysis was used to determine the intermolecular interactions. The thermal properties of the grown crystal were performed by Thermogravimetric (TG) and Differential thermal analyses (DTA). The kinetic and thermodynamic parameters were calculated. The surface morphology of the grown crystal was studied by using Scanning Electron Microscopy (SEM) analysis. The antibacterial and antifungal studies were analyzed.
Collapse
Affiliation(s)
- C. Smitha Rose
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, 629002, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
| | - T. Suthan
- Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, 629802, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
- Corresponding author. Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, 629802, India.
| | - S. Mary Delphine
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, 629002, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
| | - C. Cynitha Wise Bell
- Department of Physics, Loyola Institute of Technology and Science, Thovalai, 629302, India
| | - N.C.J. Packia Lekshmi
- Department of Allied Health Sciences, Noorul Islam Centre for Higher Education, Kumaracoil, 629180, India
| |
Collapse
|
3
|
Rasupillai Dharmaraj V, Sarkar A, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Battery Performance Amelioration by Introducing a Conducive Mixed Electrolyte in Rechargeable Mg-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9675-9684. [PMID: 36780369 DOI: 10.1021/acsami.2c22757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O2 batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O2 batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO3)2:1 M Mg(TFSI)2/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O2 batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25 793 mAh g-1 with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)2/diglyme). This CME-based Ru/CNT Mg-O2 battery design could have a significant outcome as a future battery technology.
Collapse
Affiliation(s)
- Vasantan Rasupillai Dharmaraj
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Avice J, Brotons G, Ruello P, Vaudel G, Guediche A, Piombini H. Vapor Phase Ammonia Curing to Improve the Mechanical Properties of Antireflection Optical Coatings Designed for Power Laser Optics. Gels 2023; 9:gels9020140. [PMID: 36826310 PMCID: PMC9956885 DOI: 10.3390/gels9020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol-gel silica nanoparticles and a post-treatment with ammonia vapor over the surfaces of the optical components ("ammonia curing process") was developed and successfully optimized for industrial production. Manufacturing such antireflective coatings has clear advantages: (i) it is much cheaper than conventional top-down processes; (ii) it is well adapted to large-sized optical components and large-scale production; and (iii) it gives low optical losses in transmission and high resistances to laser fluence. The post-treatment was achieved by a simple exposition of optical components to room-temperature ammonia vapors. The resulting curing process induced strong optical and mechanical changes at the interface and was revealed to be of paramount importance since it reinforced the adhesion and abrasion resistance of the components so that the optical components could be handled easily. Here, we discuss how such coatings were characterized and how the initial thin nanoparticle film was transformed from a brittle film to a resistant coating from the ammonia curing process.
Collapse
Affiliation(s)
- Jérémy Avice
- CEA, DAM Le Ripault, 37260 Monts, France
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Le Mans Université, Av. Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | - Guillaume Brotons
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Le Mans Université, Av. Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | - Pascal Ruello
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Le Mans Université, Av. Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | - Gwenaëlle Vaudel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Le Mans Université, Av. Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | | | | |
Collapse
|
5
|
Wulfes J, Baumann AK, Melchert T, Schröder C, Schauermann S. Adsorption and keto-enol-tautomerisation of butanal on Pd(111). Phys Chem Chem Phys 2022; 24:29480-29494. [PMID: 36448609 DOI: 10.1039/d2cp04398j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microscopic-level understanding of the interaction of hydrocarbons with transition metal surfaces is an important prerequisite for rational design of new materials with improved catalytic properties. In this report, we present a mechanistic study on the keto-enol tautomerisation of butanal on Pd(111), which was theoretically predicted to play a crucial role in low-barrier hydrogenation of carbonyl compounds. These processes were addressed by a combination of reflection-absorption infrared spectroscopy, molecular beam techniques and theoretical calculations at the density functional theory level. Spectroscopic information obtained on Pd(111) suggests that butanal forms three different aldehyde species, which we indicate as A1-A3 as well as their enol counterpart E1. The electronically strongest perturbed and strongest binding species A1 is most likely related to the η2(C,O) adsorption configuration, in which both C and O atoms are involved in the bonding with the underlying metal. The species A2 weakly binds and is less electronically perturbed and can be associated with the η1(O) adsorption configuration. The third type of aldehyde species A3, which is nearly unperturbed and is found only at low temperatures, results from the formation of the butanal multilayer. Importantly, the enol form of butanal was observed on the surface, which gives rise to a new characteristic band at 1104 cm-1 related to the stretching vibration of the C-O single bond (ν(C-O)). With increasing temperature, the multi-layer related species A3 disappears from the surface above 136 K. The population of aldehyde species A1 and the enol species E1 noticeably increases with increasing temperature, while the band related to the aldehyde species A2 becomes strongly attenuated and finally completely disappears above 120 K. These observations suggest that species E1 and A1 are formed in an activated process and - in view of the strongly anti-correlated population of the species E1 and A2 - it can be concluded that enol species E1 is most likely formed from the weakly bound aldehyde species A2 (η1(O)). Finally, we discuss the possible routes to enol stabilization via intermolecular bonding and provide the possible structure of the enol-containing stabilized complex, which is compatible with all spectroscopic observations. The obtained results provide important insights into the process of keto-enol tautomerisation of simple carbonyl compounds.
Collapse
Affiliation(s)
- Jessica Wulfes
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Ann-Katrin Baumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Tobias Melchert
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Carsten Schröder
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Swetlana Schauermann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| |
Collapse
|
6
|
Islam A, Molina DL, Trenary M. Adsorption of acrolein and its hydrogenation products on Cu(111). Phys Chem Chem Phys 2022; 24:24383-24393. [PMID: 36184973 DOI: 10.1039/d2cp03817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of acrolein and its hydrogenation products propanal, 1-propanol, and 2-propenol on Cu(111) was studied by reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The experimental RAIR spectra were obtained by adsorbing multilayers of each molecule at 85 K and then annealing the surface up to 200 K to desorb the multilayer and produce the most stable monolayer structure on the surface. Each of the four molecules adsorbs weakly to the surface and desorbs at temperatures below 225 K. Compared to acrolein and propanal, the two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures and broadened and redshifted O-H stretches that reveal strong hydrogen bonding in the multilayers. Upon annealing to 160 K, the OH stretches of both 2-propenol and 1-propanol disappear, indicating the hydrogen bonding in the multilayers is not present in the monolayers. For 2-propenol, the hydrogen bonding in the multilayer correlates with the observation of the CC stretch at 1647 cm-1, which is invisible for the monolayer. This suggests that the CC bond is parallel to the surface for monolayer coverages of 2-propenol. Similarly, for propanal, the CO stretch peak at 1735 cm-1 compared to those at 1671 and 1695 cm-1 is very weak at low coverages but becomes the most prominent peak for the multilayer, indicating a change in molecular orientation. For acrolein, the out-of-plane bending modes are more intense than the CO stretch at submonolayer coverages, indicating that the molecular plane is mainly parallel to the surface. In contrast, the opposite intensity trend was observed for multilayer acrolein, suggesting that the CO bonds are tilted away from the surface.
Collapse
Affiliation(s)
- Arephin Islam
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | - David L Molina
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | - Michael Trenary
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| |
Collapse
|
7
|
Al-Kaabi N, Disi ZA, Al-Ghouti MA, Solling TI, Zouari N. Interaction between indigenous hydrocarbon-degrading bacteria in reconstituted mixtures for remediation of weathered oil in soil. BIOTECHNOLOGY REPORTS 2022; 36:e00767. [PMID: 36245697 PMCID: PMC9562452 DOI: 10.1016/j.btre.2022.e00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
It has been demonstrated that biostimulation is necessary to investigate the interactions between indigenous bacteria and establish an approach for the bioremediation of soils contaminated with weathered oil. This was achieved by adjusting the carbon (C)/nitrogen (N)/phosphorus (P) ratio to 100/10/1 combined with the application of 0.8 mL/kg Tween-80. In addition, three indigenous bacteria isolated from the same soil were introduced solely or combined concomitantly with stimulation. Removal of n-alkanes and the ratios of n-heptadecane to pristane and n-octadecane to phytane were taken to indicate their biodegradation performance over a period of 16 weeks. One strain of Pseudomonas aeruginosa D7S1 improved the efficiency of the process of stimulation. However, another Pseudomonas aeruginosa, D5D1, inhibited the overall process when combined with other bacteria. One strain of Bacillus licheniformis D1D2 did not affect the process significantly. The Fourier transform infrared analysis of the residual hydrocarbons supported the conclusions pertaining to the biodegradation processes when probing the modifications in densities and stretching. The indigenous bacteria cannot mutually benefit from their metabolisms for bioremediation if augmented artificially. However, the strain Pseudomonas. aeruginosa D7S1 was able to perform better alone than in a consortium of indigenous bacteria.
Collapse
Affiliation(s)
- Nasser Al-Kaabi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. B 2713 Qatar,Corresponding author.
| | - Zulfa Al Disi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. B 2713 Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. B 2713 Qatar
| | - Theis Ivan Solling
- Center for Integrative Petroleum Research, KFUPM, Academic Loop Rd, Dhahran, 31261 KSA
| | - Nabil Zouari
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. B 2713 Qatar
| |
Collapse
|
8
|
Nayakasinghe MT, Ponce Perez R, Chen B, Takeuchi N, Zaera F. Adsorption, thermal conversion, and catalytic hydrogenation of acrolein on Cu surfaces. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ciprofloxacin-Loaded Titanium Nanotubes Coated with Chitosan: A Promising Formulation with Sustained Release and Enhanced Antibacterial Properties. Pharmaceutics 2022; 14:pharmaceutics14071359. [PMID: 35890255 PMCID: PMC9316085 DOI: 10.3390/pharmaceutics14071359] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their high entrapment efficiency, anodized titanium nanotubes (TiO2-NTs) are considered effective reservoirs for loading/releasing strong antibiotics whose systemic administration is associated with diverse and severe side-effects. In this study, TiO2-NTs were synthesized by anodic oxidation of titanium foils, and the effects of electrolyte percentage and viscosity on their dimensions were evaluated. It was found that as the water content increased from 15 to 30%, the wall thickness, length, and inner diameter of the NTs increase from 5.9 to 15.8 nm, 1.56 to 3.21 µm, and 59 to 84 nm, respectively. Ciprofloxacin, a highly potent antibiotic, was loaded into TiO2-NTs with a high encapsulation efficiency of 93%, followed by coating with different chitosan layers to achieve a sustained release profile. The prepared formulations were characterized by various techniques, such as scanning electron microscopy, differential scanning calorimetry, and contact measurement. In vitro release studies showed that the higher the chitosan layer count, the more sustained the release. Evaluation of antimicrobial activity of the formulation against two endodontic species from Peptostreptococcus and Fusobacterium revealed minimum inhibitory concentrations (MICs) of 1 µg/mL for the former and the latter. To summarize, this study demonstrated that TiO2-NTs are promising reservoirs for drug loading, and that the chitosan coating provides not only a sustained release profile, but also a synergistic antibacterial effect.
Collapse
|
10
|
Chavez‐Mulsa A, Fierro‐Gonzalez JC, Handy BE, Santos‐López IA, Jimenez‐Lam SA, De Haro Del Río DA, De la Rosa JR, Flores‐Escamilla GA. Ethylene Hydroformylation with Carbon Dioxide Catalyzed by Ruthenium Supported on Titanate Nanotubes: Infrared Spectroscopic Evidence of Surface Species. ChemistrySelect 2021. [DOI: 10.1002/slct.202102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandra Chavez‐Mulsa
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad s/n 66455 Nuevo León México
| | - Juan C. Fierro‐Gonzalez
- Departamento de Ingeniería Química Tecnológico Nacional de México Instituto Tecnológico de Celaya Antonio García Cubas 600 38010 Guanajuato México
| | - Brent E. Handy
- CIEP/ Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí Av. Dr. Manuel Nava 6 78210 San Luis Potosí México
| | - Iván Alonso Santos‐López
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad s/n 66455 Nuevo León México
| | - Sergio Aarón Jimenez‐Lam
- Facultad Ciencias Químico Biológicas Universidad Autónoma de Sinaloa Calzada de las Americas Norte 2771 80030 Sinaloa México
| | - David A. De Haro Del Río
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad s/n 66455 Nuevo León México
| | - Javier Rivera De la Rosa
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad s/n 66455 Nuevo León México
| | | |
Collapse
|
11
|
Liu M, Yang Y, Kitchin JR. Semi-grand canonical Monte Carlo simulation of the acrolein induced surface segregation and aggregation of AgPd with machine learning surrogate models. J Chem Phys 2021; 154:134701. [PMID: 33832264 DOI: 10.1063/5.0046440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The single atom alloy of AgPd has been found to be a promising catalyst for the selective hydrogenation of acrolein. It is also known that the formation of Pd islands on the surface will greatly reduce the selectivity of the reaction. As a result, the surface segregation and aggregation of Pd on the AgPd surface under reaction conditions of selective hydrogenation of acrolein are of great interest. In this work, we lay out a workflow that can predict the surface segregation and aggregation of Pd on a FCC(111) AgPd surface with and without the presence of acrolein. We use machine learning surrogate models to predict the AgPd bulk energy, AgPd slab energy, and acrolein adsorption energy on AgPd slabs. Then, we use the semi-grand canonical Monte Carlo simulation to predict the surface segregation and aggregation under different bulk Pd concentrations. Under vacuum conditions, our method predicts that only trace amount of Pd will exist on the surface at Pd bulk concentrations less than 20%. However, with the presence of acrolein, Pd will start to aggregate as dimers on the surface at Pd bulk concentrations as low as 6.5%.
Collapse
Affiliation(s)
- Mingjie Liu
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Yilin Yang
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - John R Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
12
|
Muir M, Molina DL, Islam A, Abdel-Rahman MK, Trenary M. Adsorption properties of acrolein, propanal, 2-propenol, and 1-propanol on Ag(111). Phys Chem Chem Phys 2020; 22:25011-25020. [PMID: 33112308 DOI: 10.1039/d0cp04634e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reflection absorption infrared spectroscopy and temperature programmed desorption were used to study the adsorption of acrolein, its partial hydrogenation products, propanal and 2-propenol, and its full hydrogenation product, 1-propanol on the Ag(111) surface. Each molecule adsorbs weakly to the surface and desorbs without reaction at temperatures below 220 K. For acrolein, the out-of plane bending modes are more intense than the C[double bond, length as m-dash]O stretch at all coverages, indicating that the molecular plane is mainly parallel to the surface. The two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures than acrolein and display strong hydrogen bonding in the multilayers as revealed by a broadened and redshifted O-H stretch. For 1-propanol, annealing the surface to 180 K disrupts the hydrogen-bonding to produce unusally narrow peaks, including one at 1015 cm-1 with a full width at half maximum of 1.1 cm-1. This suggests that 1-propanol forms a highly orderded monolayer and adsorbs as a single conformer. For 2-propenol, hydrogen bonding in the multilayer correlates with observation of the C[double bond, length as m-dash]C stretch at 1646 cm-1, which is invisible for the monolayer. This suggests that for monolayer coverages, 2-propenol bonds with the C[double bond, length as m-dash]C bond parallel to the surface. Similarly, the C[double bond, length as m-dash]O stretch of propanal is very weak for low coverages but becomes the largest peak for the multilayer, indicating a change in orientation with coverage.
Collapse
Affiliation(s)
- Mark Muir
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | | | | | | | | |
Collapse
|
13
|
Kim SJ, Kwak HW, Kwon S, Jang H, Park SI. Synthesis, Characterization and Properties of Biodegradable Poly(Butylene Sebacate- Co-terephthalate). Polymers (Basel) 2020; 12:E2389. [PMID: 33081379 PMCID: PMC7602960 DOI: 10.3390/polym12102389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
In this study, poly(butylene sebacate-co-terephthalate) (PBSeT) was successfully synthesized using various ratios of sebacic acid (Se) and dimethyl terephthalate (DMT). The synthesized PBSeT showed a high molecular weight (Mw, 88,700-154,900 g/mol) and good elastomeric properties. In particular, the PBSeT64 (6:4 sebacic acid/dimethyl terephthalate mole ratio) sample showed an elongation at break value of over 1600%. However, further increasing the DMT content decreased the elongation properties but increased the tensile strength due to the inherent strength of the aromatic unit. The melting point and crystallization temperature were difficult to observe in PBSeT64, indicating that an amorphous copolyester was formed at this mole ratio. Interestingly, wide angle X-ray diffraction (WAXD) curves was shown in the cases of PBSeT46 and PBSeT64, neither the crystal peaks of PBSe nor those of poly(butylene terephthalate) (PBT) are observed, that is, PBSeT64 showed an amorphous form with low crystallinity. The Fourier-transform infrared (FT-IR) spectrum showed C-H peaks at around 2900 cm-1 that reduced as the DMT ratio was increased. Nuclear magnetic resonance (NMR) showed well-resolved peaks split by coupling with the sebacate and DMT moieties. These results highlight that elastomeric PBSeT with high molecular weight could be synthesized by applying DMT monomer and showed promising mechanical properties.
Collapse
Affiliation(s)
- Sun Jong Kim
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| | - Sangwoo Kwon
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Hyunho Jang
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Su-il Park
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| |
Collapse
|
14
|
Luneau M, Lim JS, Patel DA, Sykes ECH, Friend CM, Sautet P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem Rev 2020; 120:12834-12872. [DOI: 10.1021/acs.chemrev.0c00582] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Green biosynthesis of ZnO nanomaterials and their anti-bacterial activity by using Moringa Oleifera root aqueous extract. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2945-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
16
|
Jia L, Liu W, Cao J, Wu Z, Yang C. Modified multi-walled carbon nanotubes assisted foam fractionation for effective removal of acid orange 7 from the dyestuff wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110260. [PMID: 32090883 DOI: 10.1016/j.jenvman.2020.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, multi-walled carbon nanotubes (MWCNTs) had been used to strengthen the removal of acid orange 7 (AO7) from the dyestuff wastewater by using foam fractionation. First, the surface modification of MWCNTs was performed by introducing hypochlorite groups (-OCl). The modified MWCNTs were characterized by using SEM, XRD, FTIR and Raman spectroscopy. Subsequently, the potential of modified MWCNTs as a novel collector for AO7 adsorption was examined. The adsorption conditions of modified MWCNTs towards AO7 were optimized by using response surface methodology (RSM) with a central composite design (CCD). The adsorption capacity of modified MWCNTs towards AO7 could reach 47.72 ± 0.79 mg·g-1 under the optimum conditions. The kinetics and the equilibrium adsorption data were analyzed by using different kinetic and isotherm models. According to the regression results, adsorption kinetics data were well described by pseudo-second order model, whereas adsorption isotherm data were best represented by Langmuir isotherm model. Finally, foam fractionation was performed with a batch mode. Under the suitable conditions of loading liquid volume 300 mL, modified MWCNTs dosage 180 mg, cetyltrimethylammonium bromide (CTAB) concentration 50 mg·L-1, AO7 concentration 30 mg·L-1, pore diameter of gas distributor 0.125 mm and air flow rate 100 mL·min-1, the removal percentage and enrichment ratio of AO7 were 91.23% and 6.17, respectively. The decolourization ratio of solution after foam fractionation was found to be 98.66%.
Collapse
Affiliation(s)
- Lei Jia
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China.
| | - Jilin Cao
- State Key Laboratory of Green Chemical Engineering and Efficient Energy Saving, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhaoliang Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| |
Collapse
|
17
|
Mi R, Hu Z, Yi C, Yang B. Catalytic Dehydration of 1,4‐Butanediol over Mg−Yb Binary Oxides and the Mechanism Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rongli Mi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Zhun Hu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Bolun Yang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| |
Collapse
|
18
|
Kumaniaev I, Samec JSM. Adsorption Isotherms of Lignin-Derived Compounds on a Palladium Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ivan Kumaniaev
- Department of Organic Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Joseph S. M. Samec
- Department of Organic Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Mi R, Hu Z, Yang B. In situ DRIFTS for the mechanistic studies of 1,4-butanediol dehydration over Yb/Zr catalysts. J Catal 2019. [DOI: 10.1016/j.jcat.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Schauermann S. Partial Hydrogenation of Unsaturated Carbonyl Compounds: Toward Ligand-Directed Heterogeneous Catalysis. J Phys Chem Lett 2018; 9:5555-5566. [PMID: 30204444 DOI: 10.1021/acs.jpclett.8b01782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this Perspective, we report on the recent progress in atomistic-level understanding of selective partial hydrogenation of α,β-unsaturated carbonyl compounds, particularly acrolein, toward unsaturated alcohols over model single crystalline and nanostructured Pd catalysts. This reaction was observed to proceed with nearly 100% selectivity over Pd(111) but not over supported Pd nanoparticles. The origin of the high selectivity was related to formation of a dense overlayer of oxopropyl surface species occurring at the early reaction stages via partial hydrogenation of the C=C bond in acrolein with only one H atom. This oxopropyl overlayer strongly modifies the adsorption and reactive properties of Pd(111), turning it 100% selective toward C=O bond hydrogenation. The underlying reaction mechanism represents a particular case of ligand-directed heterogeneous catalysis, in which the surface adsorbates do not directly participate in the catalytic process as the reaction intermediates but strongly affect the elementary reaction steps via specific adsorbate-adsorbate interactions.
Collapse
Affiliation(s)
- Swetlana Schauermann
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Max-Eyth-Strasse 2 , 24118 Kiel , Germany
| |
Collapse
|
21
|
Dostert KH, O’Brien CP, Mirabella F, Ivars-Barceló F, Attia S, Spadafora E, Schauermann S, Freund HJ. Selective Partial Hydrogenation of Acrolein on Pd: A Mechanistic Study. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01875] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karl-Heinz Dostert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Casey P. O’Brien
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Francesca Mirabella
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Smadar Attia
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
2, 24118 Kiel, Germany
| | - Evan Spadafora
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
2, 24118 Kiel, Germany
| | - Swetlana Schauermann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
2, 24118 Kiel, Germany
| | - Hans-Joachim Freund
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
22
|
Esan DA, Trenary M. Surface chemistry of propanal, 2-propenol, and 1-propanol on Ru(001). Phys Chem Chem Phys 2017; 19:10870-10877. [PMID: 28327733 DOI: 10.1039/c6cp08893g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show the complex chemistries between 2-propenol, propanal, and 1-propanol on Ru(001) including isomerization, hydrogenation and dehydrogenation steps.
Collapse
Affiliation(s)
- Dominic A. Esan
- Department of Chemistry
- University of Illinois at Chicago
- 845 West Taylor Street
- Chicago
- USA
| | - Michael Trenary
- Department of Chemistry
- University of Illinois at Chicago
- 845 West Taylor Street
- Chicago
- USA
| |
Collapse
|