1
|
Sugamata K, Yamada S, Yanagisawa D, Amanokura N, Shirai A, Minoura M. Zn-Based Metal-Organic Frameworks Using Triptycene Hexacarboxylate Ligands: Synthesis, Structure, and Gas-Sorption Properties. Chemistry 2023; 29:e202302080. [PMID: 37589440 DOI: 10.1002/chem.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
A series of metal-organic frameworks (MOFs) based on zinc ions and two triptycene ligands of different size have been synthesized under solvothermal conditions. Structural analyses revealed that they are isostructural 3D-network MOFs. The high porosity and thermal stability of these MOFs can be attributed to the highly rigid triptycene-based ligands. Their BET specific surface areas depend on the size of the triptycene ligands. In contrast to these surface-area data, the H2 and CO2 adsorption of these MOFs is larger for MOFs with small pores. Consequently, we introduced functional groups to the bridge-head position of the triptycene ligands and investigated their effect on the gas-sorption properties. The results unveiled the role of the functional groups in the specific CO2 binding via an induced interaction between adsorbates and the functional groups. Excellent H2 and CO2 properties in these MOFs were achieved in the absence of open metal sites.
Collapse
Affiliation(s)
- Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Shoko Yamada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Daichi Yanagisawa
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Natsuki Amanokura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- Nippon Soda Co. Ltd., 2-2-1 Ohtemachi, Chiyoda-ku, Tokyo, 100-8165, Japan
| | - Akihiro Shirai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- Nippon Soda Co. Ltd., 2-2-1 Ohtemachi, Chiyoda-ku, Tokyo, 100-8165, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
2
|
Yang J, Qiu H, Huang L, Meng S, Yang Y. Porphyrinic Porous Aromatic Frameworks for Carbon Dioxide Adsorption and Separation. Chempluschem 2023; 88:e202300292. [PMID: 37483159 DOI: 10.1002/cplu.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The capture of carbon dioxide (CO2 ) from industrial process emissions is increasingly important for the mitigation and prevention of the disruptive effects of global warming. In this study, PAF (porous aromatic frameworks)-TPB(1,3,5-triphenylbenzene) and three-dimensional PAF-TPM (tetraphenylmethane) porphyrin-based aromatic porous materials were synthesized through the Scholl reaction. The CO2 and N2 adsorption isotherms at 273 K and 298 K were studied to determine the performance in carbon dioxide capture at flue gas conditions. There is a significant difference in the adsorption capacity of the two materials for CO2 and N2 , so they can be used for CO2 /N2 adsorption separation. PAF-TPM has better CO2 /N2 separation at low pressure (150 mbar), while PAF-TPB has the advantage of greater CO2 /N2 separation at high pressure (1 bar). It can be applied to CO2 adsorption separation at low and high pressure, respectively. In particular, PAF-TPB has a CO2 /N2 separation efficiency of up to 100.9 at 1 bar and 273 K. This work provides ideas for the design and synthesis of organic porous materials for the adsorption separation of CO2 and N2 .
Collapse
Affiliation(s)
- Jierui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Huiting Qiu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long Huang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
3
|
Chaban VV, Andreeva NA. Extensively amino-functionalized graphene captures carbon dioxide. Phys Chem Chem Phys 2022; 24:25801-25815. [DOI: 10.1039/d2cp03235j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Amino-functionalized graphene demonstrates certain potential to fix carbon dioxide.
Collapse
Affiliation(s)
| | - Nadezhda A. Andreeva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| |
Collapse
|
4
|
Cai Y, Wen X, Wang Y, Song H, Li Z, Cui Y, Li C. Preparation of hyper-crosslinked polymers with hierarchical porous structure from hyperbranched polymers for adsorption of naphthalene and 1-naphthylamine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Wei C, Wu J, Feng X, Yang Z, Zhang J, Ji H. A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj02358f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A water-soluble luminescent sensor based on a spirobifluorene-based imidazolium polymer is developed for the selective sensing of Fe3+ and Cr2O72−.
Collapse
Affiliation(s)
- Caifeng Wei
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jinyi Wu
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Xiying Feng
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Zujin Yang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jianyong Zhang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Hongbing Ji
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| |
Collapse
|
6
|
Senthilkumaran M, Muthu Mareeswaran P. Porous polymers-based adsorbent materials for CO2 capture. NANOMATERIALS FOR CO2 CAPTURE, STORAGE, CONVERSION AND UTILIZATION 2021:31-52. [DOI: 10.1016/b978-0-12-822894-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
7
|
Shi K, Yao H, Zhang S, Wei Y, Xu W, Song N, Zhu S, Tian Y, Zou Y, Guan S. Porous Structure, Carbon Dioxide Capture, and Separation in Cross-Linked Porphyrin-Based Polyimides Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaixiang Shi
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Shuai Zhang
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Yanfeng Wei
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Wenhan Xu
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Ningning Song
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Shiyang Zhu
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Ye Tian
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| |
Collapse
|
8
|
|
9
|
Picric acid sensing and $$\hbox {CO}_{2}$$ CO 2 capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1403-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Emandi G, Shaker YM, Flanagan KJ, O'Brien JM, Senge MO. Merging Triptycene, BODIPY and Porphyrin Chemistry: Synthesis and Properties of Mono- and Trisubstituted Triptycene Dye Arrays. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ganapathi Emandi
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Yasser M. Shaker
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
- Division of Pharmaceutical and Drug Industries; Department of Chemistry of Natural and Microbial Products; National Research Centre; Dokki Cairo Egypt
| | - Keith J. Flanagan
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Jessica M. O'Brien
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Mathias O. Senge
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| |
Collapse
|
11
|
Gu S, Guo J, Huang Q, He J, Fu Y, Kuang G, Pan C, Yu G. 1,3,5-Triazine-Based Microporous Polymers with Tunable Porosities for CO2 Capture and Fluorescent Sensing. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01857] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuai Gu
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Jun Guo
- School
of Chemistry and Material Science, Guizhou Normal University, Guiyang 550000, China
| | - Qiao Huang
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Jianqiao He
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Yu Fu
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Guichao Kuang
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Chunyue Pan
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Guipeng Yu
- College
of Chemistry and Chemical Engineering, State Key Laboratory of Power
Metallurgy, Hunan Provincial Key Laboratory of Efficient and Clean
Utilization of Manganese Resources, Central South University, Changsha 410083, China
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110762, China
| |
Collapse
|
12
|
Kaleeswaran D, Antony R, Sharma A, Malani A, Murugavel R. Catalysis and CO2Capture by Palladium-Incorporated Covalent Organic Frameworks. Chempluschem 2017; 82:1253-1265. [DOI: 10.1002/cplu.201700342] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/11/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Dhananjayan Kaleeswaran
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai Maharashtra 400076 India
| | - Rajendran Antony
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai Maharashtra 400076 India
| | - Abhishek Sharma
- Department of Chemical Engineering; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
- IITB-Monash Research Academy; Indian Institute of Technology Bombay; Mumbai 400076 India
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing; Clayton VIC 3169 Australia
| | - Ateeque Malani
- Department of Chemical Engineering; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| | - Ramaswamy Murugavel
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai Maharashtra 400076 India
| |
Collapse
|
13
|
Gupta S, Kaleeswaran D, Nandi S, Vaidhyanathan R, Murugavel R. Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO 2 Adsorption. ACS OMEGA 2017; 2:3572-3582. [PMID: 31457676 PMCID: PMC6641411 DOI: 10.1021/acsomega.7b00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 05/03/2023]
Abstract
An azo-linked covalent organic polymer, Py-azo-COP, was synthesized by employing a highly blue-fluorescent pyrene derivative that is multiply substituted with bulky isopropyl groups. Py-azo-COP was investigated for its sensing and gas adsorption properties. Py-azo-COP shows selective sensing toward the electron-deficient polynitroaromatic compound picric acid among the many other competing analogs that were investigated. Apart from its chemosensing ability, Py-azo-COP (surface area 700 m2 g-1) exhibits moderate selectivity toward adsorption of CO2 and stores up to 8.5 wt % of CO2 at 1 bar and 18.2 wt % at 15.5 bar at 273 K, although this is limited due to the electron-rich -N=N- linkages being flanked by isopropyl groups. Furthermore, the presence of a large number of isopropyl groups imparts hydrophobicity to Py-azo-COP, as confirmed by the increased adsorption of toluene compared to that of water in the pores of the COP.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Dhananjayan Kaleeswaran
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Shyamapada Nandi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ramaswamy Murugavel
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
14
|
Emandi G, Browne MP, Lyons ME, Prior C, Senge MO. Triptycene scaffolds: Synthesis and properties of triptycene-derived Schiff base compounds for the selective and sensitive detection of CN − and Cu 2+. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Bhanja P, Chatterjee S, Bhaumik A. Triazine-Based Porous Organic Polymer with Good CO2Gas Adsorption Properties and an Efficient Organocatalyst for the One-Pot Multicomponent Condensation Reaction. ChemCatChem 2016. [DOI: 10.1002/cctc.201600840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Piyali Bhanja
- Department of Materials Science; Indian Association for the Cultivation of Science; 2A & B, Raja S.C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sauvik Chatterjee
- Department of Materials Science; Indian Association for the Cultivation of Science; 2A & B, Raja S.C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Asim Bhaumik
- Department of Materials Science; Indian Association for the Cultivation of Science; 2A & B, Raja S.C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|