1
|
Savoo N, Rhyman L, Ramasami P. Theoretical study of a derivative of chlorophosphine with aliphatic and aromatic Grignard reagents: S N2@P or the novel S N2@Cl followed by S N2@C? RSC Adv 2022; 12:9130-9138. [PMID: 35424871 PMCID: PMC8985194 DOI: 10.1039/d2ra00258b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The proposed SN2 reactions of a hindered organophosphorus reactant with aliphatic and aromatic nucleophiles [Ye et al., Org. Lett., 2017, 19, 5384–5387] were studied theoretically in order to explain the observed stereochemistry of the products.
Collapse
Affiliation(s)
- Nandini Savoo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
2
|
Han L, Huang M, Li Y, Zhang J, Zhu Y, Kim JK, Wu Y. An electrolyte- and catalyst-free electrooxidative sulfonylation of imidazo[1,2-a]pyridines. Org Chem Front 2021. [DOI: 10.1039/d1qo00038a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrolyte- and catalyst-free electrooxidative C–H activation reaction is developed to afford 3-sulfonylated imidazo[1,2-a]pyridines in good to excellent yields.
Collapse
Affiliation(s)
- Lili Han
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Mengmeng Huang
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yabo Li
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jianye Zhang
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yu Zhu
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jung Keun Kim
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yangjie Wu
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| |
Collapse
|
3
|
Hemiaminal route for the formation of interstellar glycine: a computational study. J Mol Model 2019; 25:335. [PMID: 31705313 DOI: 10.1007/s00894-019-4224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Calculations related to two simple two-step paths (path-I: [Formula: see text] path-II: [Formula: see text]) for the formation of glycine have been discussed. Calculations show that at interstellar conditions these two paths are feasible only in hot cores, not in the cold interstellar clouds (cold core formation is possible only if CH2 = NH, H2O (excess) and CO of path-II, react in a concerted manner). For the laboratory synthesis of glycine, the possibility suggested is via path-I and the reaction being carried out as controlled temperature one-pot synthesis. This study can also be extended to other α-amino acids and possibly enantiomeric excess can be expected. We think this work will not only be able to enrich our future understanding about the formation of amino acids in interstellar medium but also be able to suggest alternative paths for laboratory synthesis of amino acids using either Strecker's or Miller's ingredients. Graphical abstract Using computational calculations, two different reaction paths which go through a hemiaminal (α-hydroxyamine) intermediate have been proposed. It has been proposed that the reaction [Formula: see text] is a thermodynamically favorable reaction path in the laboratory conditions, if carried out as a controlled temperature one-pot synthesis. On the hand, it has been argued that the reaction[Formula: see text] is a feasible reaction path in the interstellar conditions, if it proceeds not via the hemiaminal route, rather in a concerted reaction path.
Collapse
|
4
|
Chu R, Zeng Y, Liu M, Zheng S, Meng L. Insight into the Effects of Electrostatic Potentials on the Conversion Mechanism of the Hydrogen-Bonded Complexes and Carbon-Bonded Complexes: An Ab Initio and Quantum Theory of "Atoms in Molecules" Investigation. ACS OMEGA 2019; 4:231-241. [PMID: 31459327 PMCID: PMC6648873 DOI: 10.1021/acsomega.8b02669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/21/2018] [Indexed: 06/10/2023]
Abstract
Carbon bond and hydrogen bond are common noncovalent interactions; although recent advances on these interactions have been achieved in both the experimental and computational aspects, little is known about the conversion mechanism between them. Here, MP2 calculations with aug-cc-pVDZ basis set (aug-cc-pVDZ-pp for element Sn) were used to optimize the geometric configurations of the hydrogen-bonded complexes MH3F···HCN (M = C, Si, Ge, and Sn), carbon-bonded complexes HCN···MH3F (M = C, Si, Ge, and Sn), and transition states; the conversion mechanism between these two types of interactions has been carried out. The molecular electrostatic potential, especially the σ-hole, is directly related to the flatten degree of intrinsic reaction coordinate (IRC) curve. The energy barriers from the hydrogen-bonded complexes to the carbon-bonded complexes are 6.99, 7.73, 10.56, and 13.59 kJ·mol-1. The energy barriers from the carbon-bonded complexes to the hydrogen-bonded complexes are 4.65, 7.81, 9.10, and 13.04 kJ·mol-1. The breakage and formation of the bonds along the reaction paths have been discussed by the topological analysis of electronic density. The energy barriers are obviously related to the width of the structure transition region (STR). For the first derivative curve of IRC energy surface versus reaction coordinate, there is a maximum peak and a minimum peak, reflecting the structural transition states in the ring STRs.
Collapse
Affiliation(s)
- Runtian Chu
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Mengyu Liu
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shijun Zheng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Lingpeng Meng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
5
|
Laloo JZA, Savoo N, Laloo N, Rhyman L, Ramasami P. ExcelAutomat 1.3: Fragment analysis based on the distortion/interaction-activation strain model. J Comput Chem 2018; 40:619-624. [DOI: 10.1002/jcc.25546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 07/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jalal Z. A. Laloo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science; University of Mauritius; Réduit 80837 Mauritius
| | - Nandini Savoo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science; University of Mauritius; Réduit 80837 Mauritius
| | - Nassirah Laloo
- School of Innovative Technologies and Engineering, Department of Creative Arts, Film and Media Technologies, University of Technology; Mauritius, La Tour Koenig, Pointe-aux-Sables 11129 Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science; University of Mauritius; Réduit 80837 Mauritius
- Department of Applied Chemistry; University of Johannesburg, Doornfontein Campus; Johannesburg 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science; University of Mauritius; Réduit 80837 Mauritius
- Department of Applied Chemistry; University of Johannesburg, Doornfontein Campus; Johannesburg 2028 South Africa
| |
Collapse
|
6
|
Bhasi P, Nhlabatsi ZP, Sitha S. Reactivity of phosphorus mononitride and interstellar formation of molecules containing phospazo linkage: A computational study on the reaction between HSi (X2Π) and PN (X1Σ+). JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphorus mononitride (PN) shows some interesting chemistry due to its low dissociation energy (compared to N2) and small dipole moment (zero dipole moment for N2). In this work, a reaction between HSi ([Formula: see text]) and PN ([Formula: see text]) has been studied using various computational methods. Analysis of the doublet surface of the [Formula: see text] reaction indicates that the reaction is exothermic in nature leading to the formation of various products. In view of the barrierless association of the reactants and exothermic nature for the product formation, it is suggested that species like HPNSi, cyclic-SiN(H)P (these two most stable isomers have phosphazo linkage) and HSiNP (third most stable isomer has phosphdiazo linkage) can possibly be detected in the interstellar medium. In view of the potential applications of phosphazo compounds in amide synthesis and pervasive nature of amide linkages in the nature, possible interstellar prebiotic applications can be advocated for these compounds.
Collapse
Affiliation(s)
- Priya Bhasi
- Department of Chemistry, University of Johannesburg, P. O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Zanele P. Nhlabatsi
- Department of Chemistry, University of Johannesburg, P. O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Sanyasi Sitha
- Department of Chemistry, University of Johannesburg, P. O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
7
|
Miriyala VM, Bhasi P, Nhlabatsi ZP, Sitha S. Formation of a pre-reaction hydrogen-bonded complex and its significance in the potential energy surface of the OH + SO2→ HOSO2 reaction: A computational study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using computational calculations, we have revisited the potential energy surface (PES) of the reaction between OH and SO2, which is believed as the rate-limiting step in the atmospheric formation of H2SO4. In this work, we report for the first time the presence of a pre-reaction hydrogen-bonded complex between OH and SO2 in the reaction PES. Based on this finding, it has been shown that the reaction can be considered as a two-step process in which the first step is the formation of the pre-reaction complex and the second step is the transformation of this complex to the product. It was observed that due to the presence of this pre-reaction complex as a potential well in the reaction PES, the barrier height got increased by around two-fold for the second step. Based on this observation, it has been proposed that the kinetics of the reaction is going to be affected. Also based on the analysis of the geometries of this pre-reaction complex and the transition state, it has been argued that the step involving the transformation of this pre-reaction complex to the product via the transition state is going to be the slowest step as this transformation involves large structural changes of the stationary points involved.
Collapse
Affiliation(s)
- Vijay M. Miriyala
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Priya Bhasi
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Zanele P. Nhlabatsi
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Sanyasi Sitha
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|