1
|
Yoshida K, Kajiwara M, Okazaki Y, Véronique L, Zinna F, Sojic N, Bouffier L, Lacour J, Ravaine V, Oda R. Modulation of circularly polarized luminescence by swelling of microgels functionalized with enantiopure [Ru(bpy) 3] 2+ luminophores. Chem Commun (Camb) 2024; 60:1743-1746. [PMID: 38240695 DOI: 10.1039/d3cc04391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Chemoresponsive microgels functionalized with enantiomeric Δ- or Λ-[Ru(bpy)3]2+ showed tunable chiroptical properties upon swelling and shrinking. The tuning is triggered by a modulation of the local mobility of [Ru(bpy)3]2+ upon addition of fructose, controlling interactions and distances between [Ru(bpy)3]2+ and phenylboronic acid.
Collapse
Affiliation(s)
- Kyohei Yoshida
- CNRS, Université de Bordeaux, Bordeaux INP, CBMN, UMR 5248, 33607, Pessac, France.
- Kumamoto Industrial Research Institute, Materials Development Department, Kumamoto, JP 862-0901, Japan
| | - Maino Kajiwara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Okazaki
- Graduate School of Energy Science 3, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lapeyre Véronique
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Francesco Zinna
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via Moruzzi 13, 56124 PISA, Italy
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Reiko Oda
- CNRS, Université de Bordeaux, Bordeaux INP, CBMN, UMR 5248, 33607, Pessac, France.
- WPI-Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, 980-8577 Sendai, Japan
| |
Collapse
|
2
|
Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23378-23387. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, bipolar electrochemistry is used to perform wireless indirect electrodeposition of two different polymer coatings on both sides of carbon nanotube arrays. Using a thermoresponsive hydrogel on one side and an inert insoluble polymer on the other side, it is possible to generate, in a single step, a nanoporous reservoir with Janus character closed on one side by a thermoresponsive membrane. The thermoresponsive polymer, poly(N-isopropylacrylamide) (pNIPAM), is generated by the local reduction of persulfate ions, which initiates radical polymerization of NIPAM. Electrophoretic paint (EP) is chosen as an inert polymer. It is deposited by precipitation because of a local decrease in pH during water oxidation. Both polymers can be deposited simultaneously on opposite sides of the bipolar electrode during the application of the electric field, yielding a double-modified Janus object. Moreover, the length and thickness of the polymer layers can be controlled by varying the electric field and the deposition time. This concept is applied to vertically aligned carbon nanotube arrays (VACNTs), trapped inside an anodic aluminum oxide membrane, which can further be used as a smart reservoir for chemical storage and release. A fluorescent dye is loaded in the VACNTs and its release is studied as a function of temperature. Low temperature, when the hydrogel layer is in the swollen state, allows diffusion of the molecule. Dye release occurs on the hydrogel-modified side of the VACNTs. At high temperatures, when the hydrogel layer is in the collapsed state, dye release is blocked because of the impermeability of the pNIPAM layer. This concept paves the way toward the design of advanced devices in the fields of drug storage and directed delivery.
Collapse
Affiliation(s)
- Malinee Niamlaem
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Oranit Phuakkong
- Division of Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Bertrand Goudeau
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Dodzi Zigah
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| |
Collapse
|
3
|
Tatry MC, Qiu Y, Lapeyre V, Garrigue P, Schmitt V, Ravaine V. Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels. J Colloid Interface Sci 2019; 561:481-493. [PMID: 31740129 DOI: 10.1016/j.jcis.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Pickering emulsions stabilized by soft and responsive microgels can demulsify on demand upon microgel collapse. The concept has been explored with simple model microgels such as poly(N-isopropylacrylamide) (pNIPAM) and their derivatives, but the role of functionalization is largely unexplored. EXPERIMENTS Saccharide-responsive phenylboronic-modified microgels are used as Pickering emulsion stabilizers. Emulsion stability and microgel organization at drop surface are studied as a function of saccharide concentration. Better insight into their behavior at interfaces is gained through adsorption kinetics and Langmuir film studies at air-water interface. FINDINGS The functionalization of water-swollen microgels by phenylboronic functions imparts some hydrophobicity to the structure, at the origin of additional internal cross-links analogous which rigidify the structure compared to non-functionalized microgels, as proved by their slow adsorption kinetics and poor interfacial compressibility. Upon boronate ester formation with diol groups of the saccharide, the hydrophobic character of the phenylboronic acid decreases, increasing the adsorption kinetics and their interfacial compressibility. Emulsions are stable in the presence of saccharide, given the high deformability of the yet-hydrophilic microgels, and mechanically unstable with less deformable particles in low saccharide concentration. The hydrophobic-hydrophilic switch acts as a trigger to tune the microgel stabilizing properties.
Collapse
Affiliation(s)
- Marie-Charlotte Tatry
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France; Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France
| | - Yating Qiu
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
4
|
Li H, Voci S, Ravaine V, Sojic N. Tuning Electrochemiluminescence in Multistimuli Responsive Hydrogel Films. J Phys Chem Lett 2018; 9:340-345. [PMID: 29290111 DOI: 10.1021/acs.jpclett.7b03119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Luminescent and redox properties of stimuli-responsive hydrogel materials have been modulated by different external stimuli which trigger swelling or collapse of the polymer matrix. There is very rapid development in the field of such "smart" materials particularly combined with other sensing functionalities. Here, a poly(N-isopropylacrylamide) matrix incorporating covalently bound phenylboronic acids as a saccharide-sensing unit and redox-active [Ru(bpy)3]2+ luminophores was designed and exhibited multistimuli responsive electrochemical and luminescent switching behaviors. Redox activity of the films is reversibly changed by sequential stimuli (fructose and temperature) which control the swelling and the collapse of the films. Finally, electrogenerated chemiluminescence (ECL) is enhanced by a ∼16-fold factor during the film collapse induced by the temperature, whereas the swelling due to fructose provokes the decrease of the light emission. We demonstrate for the first time that ECL response correlates intrinsically with the swelling ratio and is finely modulated by both stimuli. The multistimuli responsive characteristics of such ECL-active hydrogels should find promising applications in biosensing, new luminescent materials, and logic gates in bioelectronic devices.
Collapse
Affiliation(s)
- Haidong Li
- Univ. Bordeaux, Bordeaux INP, ISM CNRS UMR 5255 , Site ENSCBP, 33607 Pessac, France
| | - Silvia Voci
- Univ. Bordeaux, Bordeaux INP, ISM CNRS UMR 5255 , Site ENSCBP, 33607 Pessac, France
| | - Valérie Ravaine
- Univ. Bordeaux, Bordeaux INP, ISM CNRS UMR 5255 , Site ENSCBP, 33607 Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM CNRS UMR 5255 , Site ENSCBP, 33607 Pessac, France
| |
Collapse
|
5
|
Bois R, Scarabino S, Ravaine V, Sojic N. Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil-Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7231-7238. [PMID: 28669191 DOI: 10.1021/acs.langmuir.7b01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe a method to confine electrochemiluminescence (ECL) at the oil-water interface of emulsion droplets that are stabilized by luminophore-grafted microgels. These hydrogel nanoparticles incorporating covalently bound Ru(bpy)32+ as the luminophore are irreversibly adsorbed at the interface of micrometric oil droplets dispersed in a continuous aqueous phase. We study the electrochemical and ECL properties of this multiscale system, composed of a collection of droplets in close contact in the presence of two types of model coreactants. ECL emission is observed upon oxidation of the coreactant and of the luminophore. ECL imaging confirms that light is emitted at the surface of oil droplets. Interestingly, light emission is observed more than 100 μm far from the electrode. It is possibly due to the interconnection between redox-active microgels, making an entangled two-dimensional network at the dodecane-water interface and/or to some optical effects related to the light propagation and refraction at different interfaces in this multiphasic system. Confining ECL in such an inhomogeneous medium should find promising applications in the study of compartmentalized systems, interfacial phenomena, sensors, and analysis of single oil droplets.
Collapse
Affiliation(s)
- Rémy Bois
- Université de Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac, France
| | - Sabina Scarabino
- Université de Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac, France
| | - Valérie Ravaine
- Université de Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac, France
| | - Neso Sojic
- Université de Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac, France
| |
Collapse
|
6
|
Li H, Sentic M, Ravaine V, Sojic N. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. Phys Chem Chem Phys 2016; 18:32697-32702. [DOI: 10.1039/c6cp05688a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Collapse of thermoresponsive films enhances the electrochemiluminescence signal.
Collapse
Affiliation(s)
- Haidong Li
- University of Bordeaux
- ISM
- CNRS UMR 5255
- Bordeaux INP
- Pessac
| | - Milica Sentic
- University of Bordeaux
- ISM
- CNRS UMR 5255
- Bordeaux INP
- Pessac
| | | | - Neso Sojic
- University of Bordeaux
- ISM
- CNRS UMR 5255
- Bordeaux INP
- Pessac
| |
Collapse
|