1
|
Peng C, Zhang S, Kong L, Xu H, Li Y, Feng W. Fluorinated Carbon Nanohorns as Cathode Materials for Ultra-High Power Li/CFx Batteries. SMALL METHODS 2024; 8:e2301090. [PMID: 38009765 DOI: 10.1002/smtd.202301090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Indexed: 11/29/2023]
Abstract
Fluorinated carbon (CFx) has ultrahigh theoretical energy density among cathode materials for lithium primary batteries. CFx, as an active material in the cathode, plays a decisive role in performance. However, the performance of commercialized fluorinated graphite (FG) does not meet this continuously increasing performance demand. One effective way to increase the overall performance is to manipulate carbon-fluorine (C─F) bonds. In this study, carbon nanohorns are first used as a carbon source and are fluorinated at relatively low temperatures to obtain a new type of CFx with semi-ionic C─F bonds. Carbon nanohorns with a high degree of fluorination achieved a specific capacity comparable to that of commercial FG. Density functional theory (DFT) calculations revealed that curvature structure regulated its C─F bond configuration, thermodynamic parameters, and ion diffusion pathway. The dominant semi-ionic C─F bonds guarantee good conductivity, which improves rate performance. Fluorinated carbon nanohorns delivered a power density of 92.5 kW kg-1 at 50 C and an energy density of 707.6 Wh kg-1 . This result demonstrates the effectiveness of tailored C─F bonds and that the carbon nanohorns shorten the Li+ diffusion path. This excellent performance indicates the importance of designing the carbon source and paves new possibilities for future research.
Collapse
Affiliation(s)
- Cong Peng
- Institute of advanced technology and equipment, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shixue Zhang
- Institute of advanced technology and equipment, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lingchen Kong
- School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hang Xu
- Institute of advanced technology and equipment, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Li
- Institute of advanced technology and equipment, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Feng
- Institute of advanced technology and equipment, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Nie Z, Zhang K, Chen X, Wang J, Gao H, Zheng B, Wu Q, Guo Y, Liu X, Wang X. A Multifunctional Integrated Metal-Free MRI Agent for Early Diagnosis of Oxidative Stress in a Mouse Model of Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206171. [PMID: 36596646 PMCID: PMC9982554 DOI: 10.1002/advs.202206171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are closely associated with the progression of diabetic cardiomyopathy (DCM) and can be regarded as one of its early biomarkers. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of cardiac abnormalities, but the sensitive and direct ROS-response MRI probe remains to be developed. This restricts the early diagnosis of DCM and prevents timely clinical interventions, resulting in serious and irreversible pathophysiological abnormalities. Herein, a novel ROS-response contrast-enhanced MRI nanoprobe (RCMN) is developed by multi-functionalizing fluorinated carbon nanosheets (FCNs) with multi-hydroxyl and 2,2,6,6-tetramethylpiperidin-1-oxyl groups. RCMNs capture ROS and then gather in the heart provisionally, which triggers MRI signal changes to realize the in vivo detection of ROS. In contrast to the clinical MRI agents, the cardiac abnormalities of disease mice is detected 8 weeks in advance with the assistance of RCMNs, which greatly advances the diagnostic window of DCM. To the best of the knowledge, this is the first ROS-response metal-free T2 -weighted MRI probe for the early diagnosis of DCM mice model. Furthermore, RCMNs can timely scavenge excessively produced ROS to alleviate oxidative stress.
Collapse
Affiliation(s)
- Zhuang Nie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Kun Zhang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xinyu Chen
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jingxin Wang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610064P. R. China
| | - Bingwen Zheng
- Time Medical Ltd., Hong Kong Science & Technology ParkHong Kong999077P. R. China
| | - Qihong Wu
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Yingkun Guo
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xiangyang Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xu Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
3
|
Li Y, Chen T, Liu Y, Liu X, Wang X. Simultaneously enhance dielectric strength and reduce dielectric loss of polyimide by compositing reactive fluorinated graphene filler. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
5
|
Li Y, Cheng J, Wang X, Liu Y, Liu X. Thermal stability of C-F/C(-F) 2 bonds in fluorinated graphene detected by in situ heating infrared spectroscopy. Phys Chem Chem Phys 2021; 23:26853-26863. [PMID: 34821242 DOI: 10.1039/d1cp04472a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The thermal stability of fluorinated graphene (FG) plays an important role in its application and research, and thus it is necessary to conduct in-depth research on the thermal stability of the C-F bond in FG. Herein, FG with different types and distributions of C-F/C(-F)2 bonds were synthesized, and the correlation between the C-F/C(-F)2 bonds and thermal stability of these FG samples was monitored via in situ heating infrared spectroscopy (in situ FTIR). The stability of the different types and distributions of C-F/C(-F)2 bonds in FG and the temperatures at which these C-F/C(-F)2 bonds were eliminated were determined. In terms of C-F bonds in FG, the most stable type is that in C(-F)2 of perfluorinated FG, followed by the C-F bonds in perfluorinated FG. The thermal stability of isolated C-F bonds and C(-F)2 bonds adjacent to the conjugated structure was the worst, which would be detached from FG at low temperature (≤82 °C). Furthermore, the evolution of the conjugated structures in FG during thermal annealing was also affected by the type and distribution of the C-F bonds.
Collapse
Affiliation(s)
- Yulong Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China.
| | - Jingliang Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China.
| | - Xu Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China.
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China.
| | - Xiangyang Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China.
| |
Collapse
|
6
|
Huang F, Li Y, Liu X, Lai W, Fan K, Liu X, Wang X. Suzuki-Miyaura reaction of C-F bonds in fluorographene. Chem Commun (Camb) 2021; 57:351-354. [PMID: 33319890 DOI: 10.1039/d0cc07651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the first successful covalent modification of fluorographene (FG) based on Suzuki-Miyaura reaction of the C-F bond. The origin of the reaction efficiency of the C-F bond can be linked to the two-dimensional structure of FG and the synergistic effect of a phosphine ligand. This extends the application of the Suzuki reaction of the C-F bond into two-dimensional chemistry.
Collapse
Affiliation(s)
- Feng Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chendu 610065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu X, Li X, Li Y, Qin R, Huang F, Wang X, Liu X. Regulating the Bonding Nature and Location of C–F Bonds in Fluorinated Graphene by Doping Nitrogen Atoms. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yulong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feng Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Whang DR. Immobilization of molecular catalysts for artificial photosynthesis. NANO CONVERGENCE 2020; 7:37. [PMID: 33252707 PMCID: PMC7704885 DOI: 10.1186/s40580-020-00248-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
Collapse
Affiliation(s)
- Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, 34054, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Effect of the Fluorination of Graphene Nanoflake on the Dispersion and Mechanical Properties of Polypropylene Nanocomposites. NANOMATERIALS 2020; 10:nano10061171. [PMID: 32560084 PMCID: PMC7353096 DOI: 10.3390/nano10061171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
Abstract
In order to investigate the effect of fluorination of graphene nanoflake on the dispersibility in polypropylene (PP) composites, fluorinated graphene oxide (FGO) was prepared by solvo-thermal reaction and applied as a filler of the PP nanocomposite. Due to the weakened inter-particle attraction among the graphene nanoflake and reduced surface energy difference between PP and the filler, PP/FGO composites showed better exfoliation and dispersion state of the filler compared with that of PP/graphene oxide (GO) or PP/reduced graphene oxide (RGO) composites. The improved exfoliation and dispersion of graphene nanoflake resulted in a significant reinforcement on the composites. The Young’s modulus and tensile strength of PP composites filled with 2 wt% of FGO increased by 31% and 15%, respectively, compared with those of PP.
Collapse
|
10
|
Meng C, Li X, Zhang B, Dai Y, Cheng Z, Luo L, Chen Y, Liu X. C-N Coupling Reactions on Graphene with Aromatic Macromolecules and the Spatial Conformation of Grafted Macromolecules. Chemistry 2020; 26:1819-1826. [PMID: 31808197 DOI: 10.1002/chem.201904014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/06/2022]
Abstract
The fabrication of advanced graphene-based nanocomposites with high-performance polymers requires covalent modification of graphene with aromatic macromolecules. Herein, C-N coupling reactions between fluorinated graphene (FG) and aromatic polyamides containing the benzimidazole moiety are successfully achieved. The optimized conditions are presented based on the nucleophilic behavior of the C-N coupling reaction on graphene. Different from the C-N coupling reaction between two small aromatic molecules, the conformation of grafted aromatic polyamide after reaction changes from torsional to paralleled alignment on graphene with the molecular length increment. Non-covalent interactions between graphene and aromatic polyamides result in this conformational change owing to the extended π systems of graphene and aromatic polyamides, and the synergistic effect of covalent and non-covalent interactions is put forward. As a consequence, graphene dispersibility is greatly enhanced in the solution of aromatic polyamide.
Collapse
Affiliation(s)
- Chenbo Meng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| | - Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Yu Dai
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| | - Zheng Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| | - Longbo Luo
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| | - Yue Chen
- State Key Lab of Fluorinated Functional Membrane Materials, Dongyue Polymer Material Company of Dongyue Federation, Zibo, Shandong, 256401, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
11
|
Fan Z, Liao F, Shi H, Liu Y, Dang Q, Shao M, Kang Z. One-Step Direct Fixation of Atmospheric CO 2 by Si-H Surface in Solution. iScience 2020; 23:100806. [PMID: 31926428 PMCID: PMC6957863 DOI: 10.1016/j.isci.2019.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
The efficient conversion of carbon dioxide (CO2) into useful chemicals has important practical significance for environmental protection. Until now, direct fixation of atmospheric CO2 needs first extraction from the atmosphere, an energy-intensive process. Silicon (or Si-H surface), Earth-abundant, low-cost and non-toxic, is a promising material for heterogeneous CO2 chemical fixation. Here we report one-step fixing of CO2 directly from the atmosphere to a paraformaldehyde-like polymer by Si-H surface at room temperature. With the assistance of HF, commercial silicon powder was used as a heterogeneous reducing agent, for converting gaseous CO2 to a polymer of fluorine substituted polyoxymethylene and hydroxyl substituted polyoxymethylene alternating copolymer (F-POM). Making use of the Si-H surface toward the fixation of atmospheric gaseous CO2 is a conceptually distinct and commercially interesting strategy for making useful chemicals and environmental protection.
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China
| | - Huixian Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China.
| | - Qian Dang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
12
|
Luo L, Wu H, Liu Y, Huang J, Liu X. Synergistic “Anchor” Effect of Carbon Nanotubes and Silica: A Facile and Efficient Double-Nanocomposite System To Reinforce High-Performance Polyimide Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Longbo Luo
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hang Wu
- Beijing Special Vehicle Institute, Beijing 100072, P. R. China
| | - Yang Liu
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jieyang Huang
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiangyang Liu
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
13
|
Lai W, Wang C, Chen Y, He T, Fan K, Liu X, Wang X. In Situ Radical Polymerization and Grafting Reaction Simultaneously Initiated by Fluorinated Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6610-6619. [PMID: 31038966 DOI: 10.1021/acs.langmuir.9b00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorinated graphene (FG) showed interesting electrochemical, electronic, and mechanical properties, as well as chemical reactivity for multifarious functionalization of graphene material. This work reported a free radical polymerization and grafting from polymerization of a styrene monomer directly initiated by FG, which simultaneously provided free polymers and functionalized graphene with polymer chains grafted. The FG exhibited an almost comparative initiation efficiency to equivalent commercial initiator azodiisobutyronitrile under similar conditions, resulting in a high yield of free polystyrene (40.9%) with a high molecular weight ( Mn = 114.7 kg/mol). It was demonstrated that FG-triggered polymerization presented some special characteristics, such as a long lifetime of chain radical centers even when the reaction was stopped and insensitivity to oxygen molecules. The mechanistic study indicated that the polymerization was initiated by single-electron transfer reaction between FG and a monomer leading to formation of primary radicals; in addition, FG also played an important role in chain transfer and termination reactions during the polymerization process.
Collapse
Affiliation(s)
- Wenchuan Lai
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| | - Chun Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| | - Yue Chen
- State Key Lab of Fluorinated Functional Membrane Materials , Dongyue Polymer Material Company of Dongyue Federation , Zibo , Shandong 256401 , P. R. China
| | - Taijun He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| | - Kun Fan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| | - Xu Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu , Sichuan 610065 , P. R. China
| |
Collapse
|
14
|
Shen X, He J, Wang K, Li X, Wang X, Yang Z, Wang N, Zhang Y, Huang C. Fluorine-Enriched Graphdiyne as an Efficient Anode in Lithium-Ion Capacitors. CHEMSUSCHEM 2019; 12:1342-1348. [PMID: 30710428 DOI: 10.1002/cssc.201900101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Lithium-ion capacitors (LICs) have shown extraordinary promise for electrochemical energy storage but are usually limited to electrodes with low energy density or power density owing to the lack of active storage sites and ion diffusion limitation. In this study, fluorine-enriched graphdiyne (F-GDY) is prepared by a solvothermal reaction. Owing to the 42-C hexagonal porous structure, abundant sp and sp2 hybrid carbon atoms, and even distribution of fluorine, F-GDY has enormous potential as an anode for lithium-ion storage. The outstanding rate performance (1825.9 mAh g-1 at 0.1 A g-1 , 979.2 mAh g-1 at 5 A g-1 ) and stable cycling stability of F-GDY in the lithium-ion battery inspire the assembly of a LIC with F-GDY as an anode and activated carbon (AC) as a cathode. When the AC/F-GDY mass ratio is 7:1, the LIC gives the largest energy density of 200.2 Wh kg-1 , corresponding to a power density of 131.17 W kg-1 . This LIC also shows excellent long-term cycling stability with a retention of approximately 80 % after 5000 cycles at 2 A g-1 and a retention of more than 80 % after 6000 cycles at 5 A g-1 .
Collapse
Affiliation(s)
- Xiangyan Shen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianjiang He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
| | - Kun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ze Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
| | - Ning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
| | - Yanliang Zhang
- Thermo Fisher Scientific Ltd, 201206, Shanghai, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101, Qingdao, China
| |
Collapse
|
15
|
Siyal MI, Khan AA, Lee CK, Kim JO. Surface modification of glass fiber membranes by fluorographite coating for desalination of concentrated saline water with humic acid in direct-contact membrane distillation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Liu Y, Zhang Y, Zhang C, Huang B, Li Y, Lai W, Wang X, Liu X. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe 3O 4 to enhance microwave absorbing property. NANOTECHNOLOGY 2018; 29:365703. [PMID: 29889048 DOI: 10.1088/1361-6528/aacbae] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Conventional approaches to preparing highly fluorinated multiwalled carbon nanotubes (MWCNTs) always require a high temperature. This paper presents a catalytic approach to realizing the effective fluorination of MWNCTs at room temperature (RT). Fe3O4/MWCNTs composites with Fe3O4 loaded on MWCNTs were first prepared using the solvothermal method, followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4/MWCNTs (F-Fe3O4/MWCNTs) can reach up to 17.13 at% (almost six times that of the unloaded sample) only after fluorination at room temperature, which leads to an obvious decrease in permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormally enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4/CNTs composite exhibits increased impedance matching and thus an enhanced microwave absorption property with a minimal reflection loss of -45 dB at 2.61 mm when the filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to preparing highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials.
Collapse
Affiliation(s)
- Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lai W, Liu J, Luo L, Wang X, He T, Fan K, Liu X. The Friedel-Crafts reaction of fluorinated graphene for high-yield arylation of graphene. Chem Commun (Camb) 2018; 54:10168-10171. [PMID: 30137102 DOI: 10.1039/c8cc05762a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we report the Friedel-Crafts reaction of fluorinated graphene with aryl molecules including methylbenzene, chlorobenzene and polystyrene. The reaction achieved the high-yield arylation functionalization of graphene under mild reaction conditions and extends the range of the Friedel-Crafts reaction to the field of two-dimensional materials.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Matochová D, Medved’ M, Bakandritsos A, Steklý T, Zbořil R, Otyepka M. 2D Chemistry: Chemical Control of Graphene Derivatization. J Phys Chem Lett 2018; 9:3580-3585. [PMID: 29890828 PMCID: PMC6038093 DOI: 10.1021/acs.jpclett.8b01596] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Controllable synthesis of graphene derivatives with defined composition and properties represents the holy grail of graphene chemistry, especially in view of the low reactivity of graphene. Recent progress in fluorographene (FG) chemistry has opened up new routes for synthesizing a plethora of graphene derivatives with widely applicable properties, but they are often difficult to control. We explored nucleophilic substitution on FG combining density functional theory calculations with experiments to achieve accurate control over the functionalization process. In-depth analysis revealed the complexity of the reaction and identified basic rules for controlling the 2D chemistry. Their application, that is, choice of solvent and reaction time, enabled facile control over the reaction of FG with N-octylamine to form graphene derivatives with tailored content of the alkylamine functional group (2.5-7.5% N atomic content) and F atoms (31.5-3.5% F atomic content). This work substantially extends prospects for the controlled covalent functionalization of graphene.
Collapse
|
19
|
Medveď M, Zoppellaro G, Ugolotti J, Matochová D, Lazar P, Pospíšil T, Bakandritsos A, Tuček J, Zbořil R, Otyepka M. Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. NANOSCALE 2018; 10:4696-4707. [PMID: 29442111 PMCID: PMC5892133 DOI: 10.1039/c7nr09426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 05/02/2023]
Abstract
Preparation of graphene derivatives using fluorographene (FG) as a precursor has become a key strategy for the large-scale synthesis of new 2-D materials (e.g. graphene acid, cyanographene, allyl-graphene) with tailored physicochemical properties. However, to gain full control over the derivatization process, it is essential to understand the reaction mechanisms and accompanying processes that affect the composition and structure of the final products. Despite the strength of C-F bonds and high chemical stability of perfluorinated hydrocarbons, FG is surprisingly susceptible to reactions under ambient conditions. There is clear evidence that nucleophilic substitution on FG is accompanied by spontaneous defluorination, and solvent-induced defluorination can occur even in the absence of any nucleophilic agent. Here, we show that distributed radical centers (fluorine vacancies) on the FG surface need to be taken into account in order to rationalize the defluorination mechanism. Depending on the environment, these radical centers can react as electron acceptors, electrophilic sites and/or cause homolytic bond cleavages. We also propose a new radical mechanism of FG defluorination in the presence of N,N'-dimethylformamide (DMF) solvent. Spin-trap experiments as well as 19F NMR measurements unambiguously confirmed formation of N,N'-dimethylformyl radicals and also showed that N,N'-dimethylcarbamoyl fluoride plays a key role in the proposed mechanism. These findings imply that point defects in 2D materials should be considered as key factor determining their chemical properties and reactivity.
Collapse
Affiliation(s)
- Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Juri Ugolotti
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Dagmar Matochová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Tomáš Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Jiří Tuček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Sturala J, Luxa J, Pumera M, Sofer Z. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry 2018; 24:5992-6006. [PMID: 29071744 DOI: 10.1002/chem.201704192] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 02/06/2023]
Abstract
The chemistry of graphene and its derivatives is one of the hottest topics of current material science research. The derivatisation of graphene is based on various approaches, and to date functionalization with halogens, hydrogen, various functional groups containing oxygen, sulfur, nitrogen, phosphorus, boron, and several other elements have been reported. Most of these functionalizations are based on sp3 hybridization of carbon atoms in the graphene skeleton, which means the formation of out-of-plane covalent bonds. Several elements were also reported for substitutional modification of graphene, where the carbon atoms are substituted with atoms like nitrogen, boron, and several others. From tens of functional groups, for only two of them were reported full functionalization of graphene skeleton and formation of its stoichiometric counterparts, fluorographene and hydrogenated graphene. The functionalization of graphene is crucial for most of its applications including energy storage and conversion devices, electronic and optic applications, composites, and many others.
Collapse
Affiliation(s)
- Jiri Sturala
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Martin Pumera
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
21
|
Rajeena U, Akbar M, Raveendran P, Ramakrishnan RM. Fluorographite to hydroxy graphene to graphene: a simple wet chemical approach for good quality graphene. NEW J CHEM 2018. [DOI: 10.1039/c8nj01392f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Good quality graphene is prepared in a scalable manner from fluorographite by nucleophilic substitution of F with OH− ions.
Collapse
Affiliation(s)
- Uruniyengal Rajeena
- Department of Chemistry
- Sree Neelakanta Govt. Sanskrit College
- Pattambi, Affiliated to University of Calicut
- India
| | - Mohammed Akbar
- Department of Chemistry
- Sree Neelakanta Govt. Sanskrit College
- Pattambi, Affiliated to University of Calicut
- India
| | | | - Resmi M. Ramakrishnan
- Department of Chemistry
- Sree Neelakanta Govt. Sanskrit College
- Pattambi, Affiliated to University of Calicut
- India
| |
Collapse
|
22
|
Lai W, Yuan Y, Wang X, Liu Y, Li Y, Liu X. Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure. Phys Chem Chem Phys 2017; 20:489-497. [PMID: 29214274 DOI: 10.1039/c7cp06708a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of nucleophilic substitution deserves more investigation to include more reaction systems such as two-dimensional (2D) materials. In this study, we used fluorinated graphene (FG) as a representative 2D material to reveal the in-depth mechanism of its defluorination and nucleophilic substitution reaction under attack of common nucleophiles to explore the chemistry of 2D materials and enrich the research on the nucleophilic substitution reaction. DFT calculations and electron paramagnetic resonance spectroscopy (EPR) demonstrated that defluorination of FG occurred via a radical mechanism after a single electron transfer (SET) reaction between the nucleophile and C-F bond, and a spin center was generated on the nanosheet and fluorine anion. Moreover, neither the SN1 nor SN2 mechanism was suggested to be appropriate for the substitution reaction of FG with a 2D structure due to the corresponding kinetics or thermodynamics disadvantage; hence, its nucleophilic substitution was proved to occur via a radical mechanism initiated by the defluorination step. The proposed substitution mechanism of FG demonstrates that nucleophilic substitution via a radical mechanism can also be applied to the attacking process of common nucleophiles without any particular conditions. Furthermore, it has been discovered that triethylamine without active hydrogen can be covalently attached to graphene nanosheets via a nucleophilic substitution reaction with FG; this further indicates a radical process for the nucleophilic substitution of FG rather than an SN1 or SN2 mechanism. The detailed process of the nucleophilic substitution reaction of FG was revealed to occur via a radical mechanism depending on the 2D structure of FG, which could also represent the typical characteristic of 2D chemistry.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
23
|
Chronopoulos DD, Bakandritsos A, Pykal M, Zbořil R, Otyepka M. Chemistry, properties, and applications of fluorographene. APPLIED MATERIALS TODAY 2017; 9:60-70. [PMID: 29238741 PMCID: PMC5721099 DOI: 10.1016/j.apmt.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/23/2023]
Abstract
Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.
Collapse
|
24
|
Chronopoulos D, Bakandritsos A, Lazar P, Pykal M, Čépe K, Zbořil R, Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:926-930. [PMID: 28216805 PMCID: PMC5312839 DOI: 10.1021/acs.chemmater.6b05040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/06/2017] [Indexed: 05/18/2023]
|
25
|
Chen T, Wang X, Liu Y, Li B, Cheng Z, Wang Z, Lai W, Liu X. Effects of the oxygenic groups on the mechanism of fluorination of graphene oxide and its structure. Phys Chem Chem Phys 2017; 19:5504-5512. [DOI: 10.1039/c6cp07665c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the chemical structure of graphene oxide on its fluorination reaction and on the structure of the products was investigated.
Collapse
Affiliation(s)
- Teng Chen
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xu Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Baoyin Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Zheng Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Zaoming Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Wenchuan Lai
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xiangyang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|