1
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
2
|
Jena NR, Das P, Shukla PK. Complementary base pair interactions between different rare tautomers of the second-generation artificial genetic alphabets. J Mol Model 2023; 29:125. [PMID: 37014428 DOI: 10.1007/s00894-023-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The functionality of a semisynthetic DNA in the biological environment will depend on the base pair nature of its complementary base pairs. To understand this, base pair interactions between complementary bases of recently proposed eight second-generation artificial nucleobases are studied herein by considering their rare tautomeric conformations and a dispersion-corrected density functional theoretic method. It is found that the binding energies of two hydrogen-bonded complementary base pairs are more negative than those of the three hydrogen-bonded base pairs. However, as the former base pairs are endothermic, the semisynthetic duplex DNA would involve the latter base pairs.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India
| | - P K Shukla
- Department of Physics, Assam University, Silchar, 788011, India
| |
Collapse
|
3
|
Products of Oxidative Guanine Damage Form Base Pairs with Guanine. Int J Mol Sci 2020; 21:ijms21207645. [PMID: 33076559 PMCID: PMC7589758 DOI: 10.3390/ijms21207645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5'-cyclo-2'-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.
Collapse
|
4
|
Gop S, Sutradhar R, Chakraborty S, Sinha TP. Tautomeric effect of guanine on stability, spectroscopic and absorbance properties in cytosine–guanine base pairs: a DFT and TD-DFT perspective. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jena NR. Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys Chem Chem Phys 2020; 22:28115-28122. [DOI: 10.1039/d0cp05297c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Base-pair mutations induced by different tautomers of anti-viral drugs are the main reasons for their anti-viral activities.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design, and Manufacturing
- Khamaria
- India
| |
Collapse
|
6
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
7
|
Halder A, Vemuri S, Roy R, Katuri J, Bhattacharyya D, Mitra A. Evidence for Hidden Involvement of N3-Protonated Guanine in RNA Structure and Function. ACS OMEGA 2019; 4:699-709. [PMID: 30775644 PMCID: PMC6372247 DOI: 10.1021/acsomega.8b02908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
Charged nucleobases have been found to occur in several known RNA molecules and are considered essential for their structure and function. The mechanism of their involvement is however not yet fully understood. Revelation of the role of N7-protonated guanine, in modulating the geometry and stability of noncanonical base pairs formed through its unprotonated edges [Watson-Crick (WC) and sugar], has triggered the need to evaluate the feasibility of similar roles of other protonated nucleobases [Halder et al., Phys Chem Chem Phys, 2015, 17, 26249]. In this context, N3 protonation of guanine makes an interesting case as its influence on the charge distribution of the WC edge is similar to that of N7 protonation, though its thermodynamic cost of protonation is significantly higher. In this work, we have carried out structural bioinformatics analyses and quantum mechanics-based calculations to show that N3 protonation of guanine may take place in a cellular environment, at least in the G:C W:W Trans and G:G W:H Cis base pairs. Our results provide a reasonable starting point for future investigations in order to address the larger mechanistic question.
Collapse
Affiliation(s)
- Antarip Halder
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Saurabh Vemuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Rohit Roy
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Jayanth Katuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Dhananjay Bhattacharyya
- Computational
Science Division, Saha Institute of Nuclear
Physics (SINP), 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
8
|
Jena NR, Das P, Behera B, Mishra PC. Analogues of P and Z as Efficient Artificially Expanded Genetic Information System. J Phys Chem B 2018; 122:8134-8145. [PMID: 30063353 DOI: 10.1021/acs.jpcb.8b04207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To artificially expand the genetic information system and to realize artificial life, it is necessary to discover new functional DNA bases that can form stable duplex DNA and participate in error-free replication. It is recently proposed that the 2-amino-imidazo[1,2- a]-1,3,5-triazin-4(8 H)one (P) and 6-amino-5-nitro-2(1 H)-pyridone (Z) would form a base pair complex, which is more stable than that of the normal G-C base pair and would produce an unperturbed duplex DNA. Here, by using quantum chemical calculations in aqueous medium, it is shown that the P and Z molecules can be modified with the help of electron-withdrawing and -donating substituents mainly found in B-DNA to generate new bases that can produce even more stable base pairs. Among the various bases studied, P3, P4, Z3, and Z5 are found to produce base pairs, which are about 2-15 kcal/mol more stable than the P-Z base pair. It is further shown that these base pairs can be stacked onto the G-C and A-T base pairs to produce stable dimers. The consecutive stacking of these base pairs is found to yield even more stable dimers. The influence of charge penetration effects and backbone atoms in stabilizing these dimers are also discussed. It is thus proposed that the P3, P4, Z3, and Z5 would form promiscuous artificial genetic information system and can be used for different biological applications. However, the evaluations of the dynamical effects of these bases in DNA-containing several nucleotides and the efficacy of DNA polymerases to replicate these bases would provide more insights.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - P C Mishra
- Department of Physics , Banaras Hindu University , Varanasi 221005 , India
| |
Collapse
|
9
|
Zeng T, Fleming AM, Ding Y, Ren H, White HS, Burrows CJ. Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA. J Org Chem 2018; 83:3973-3978. [PMID: 29490132 DOI: 10.1021/acs.joc.8b00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In DNA, guanine oxidation yields diastereomers of 5-guanidinohydantoin (Gh) as one of the major products. In nucleosides and single-stranded DNA, Gh is in a pH-dependent equilibrium with its constitutional isomer iminoallantoin (Ia). Herein, the isomerization reaction between Gh and Ia was monitored in duplex DNA using a protein nanopore by measuring the ionic current when duplex DNA interacts with the pore under an electrophoretic force. Monitoring current levels in this single-molecule method proved to be superior for analysis of population distributions in an equilibrating mixture of four isomers in duplex DNA as a function of pH. The results identified Gh as a major isomer observed when base paired with A, C, or G at pH 6.4-8.4, and Ia was a minor isomer of the reaction mixture that was only observed when the pH was >7.4 in the duplex DNA context. The present results suggest that Gh will be the dominant isomer in duplex DNA under physiological conditions regardless of the base-pairing partner in the duplex.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Yun Ding
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Hang Ren
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
10
|
Negi I, Kathuria P, Sharma P, Wetmore SD. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations. Phys Chem Chem Phys 2018; 19:16365-16374. [PMID: 28657627 DOI: 10.1039/c7cp02576a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational (DFT and MD simulation) methods are employed to systematically characterize the structural and energetic properties of five hydrophobic nucleobases (FEMO, MMO2, NaM, 5SICS and TPT3) that constitute four unnatural base pairs (FEMO:5SICS, MMO2:5SICS, NaM:5SICS and TPT3:NaM). These hydrophobic bases have been recently shown to be replicated when present between natural bases in DNA duplexes, with the highest replication fidelity and efficiency occuring for the TPT3:NaM pair. Our QM calculations suggest that the preferred (anti) glycosidic orientations of nucleosides containing hydrophobic bases are similar to the natural DNA nucleosides despite differences in their chemical structures. However, due to the inability to form interbase hydrogen bonds, hydrophobic base pairs intrinsically prefer nonplanar, distorted geometries, many of which are stabilized through π-π stacking interactions. Furthermore, the intrinsic stacking potential between a hydrophobic and a natural base is similar to that between two natural bases, indicating that the strength of stacking interactions in DNA duplexes containing hydrophobic bases is likely comparable to natural DNA. However, in contrast to the isolated base-pair geometries, our MD simulations suggest that the hydrophobic base pairs adopt variable geometries within DNA, which range from stacked (5SICS:FEMO) to nearly planar (5SICS:NaM and SICS:MMO2) to planar (TPT3:NaM). As a result, the duplex structural features at the site of modification depend on the identity of the hydrophobic base pair, where the TPT3:NaM pair causes the least structural changes compared to natural DNA. Overall, the structural insight obtained from our calculations on DNA containing hydrophobic base pairs explains the experimentally-observed higher fidelity and efficiency during replication of TPT3:NaM compared to other hydrophobic nucleobase pairs. By providing valuable structural information that explains the intrinsic and duplex properties of this class of unnatural nucleobases, the present work may aid the future design of improved hydrophobic analogues.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | | | | | | |
Collapse
|
11
|
DeVito S, Woodrick J, Song L, Roy R. Mutagenic potential of hypoxanthine in live human cells. Mutat Res 2017; 803-805:9-16. [PMID: 28704682 DOI: 10.1016/j.mrfmmm.2017.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
Hypoxanthine (Hx) is a major DNA lesion generated by deamination of adenine during chronic inflammatory conditions, which is an underlying cause of various diseases including cancer of colon, liver, pancreas, bladder and stomach. There is evidence that deamination of DNA bases induces mutations, but no study has directly linked Hx accumulation to mutagenesis and strand-specific mutations yet in human cells. Using a site-specific mutagenesis approach, we report the first direct evidence of mutation potential and pattern of Hx in live human cells. We investigated Hx-induced mutations in human nonmalignant HEK293 and cancer HCT116 cell lines and found that Hx is mutagenic in both HEK293 and HCT116 cell lines. There is a strand bias for Hx-mediated mutations in both the cell lines; the Hx in lagging strand is more mutagenic than in leading strand. There is also some difference in cell types regarding the strand bias for mutation types; HEK293 cells showed largely deletion (>80%) mutations in both leading and lagging strand and the rest were insertions and A:T→G:C transition mutations in leading and lagging strands, respectively, whereas in HCT116 cells we observed 60% A:T→G:C transition mutations in the leading strand and 100% deletions in the lagging strand. Overall, Hx is a highly mutagenic lesion capable of generating A:T→G:C transitions and large deletions with a significant variation in leading and lagging strands in human cells. In recent meta-analysis study A→G (T→C) mutations were found to be a prominent signature in a variety of cancers, including a majority types that are induced by inflammation. The deletions are known to be a major cause of copy-number variations or CNVs, which is a major underlying cause of many human diseases including mental illness, developmental disorders and cancer. Thus, Hx, a major DNA lesion induced by different deamination mechanisms, has potential to initiate inflammation-driven carcinogenesis in addition to various human pathophysiological consequences.
Collapse
Affiliation(s)
- Stephen DeVito
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jordan Woodrick
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Linze Song
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Rabindra Roy
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.
| |
Collapse
|
12
|
Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Biochemistry 2017; 56:3008-3018. [PMID: 28514164 DOI: 10.1021/acs.biochem.7b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Moinuddin A Chowdhury
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Aditi Nadkarni
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Suse Broyde
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - David A Scicchitano
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States.,Division of Science, New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Vladimir Shafirovich
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| |
Collapse
|
13
|
Jena NR, Mishra PC. Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis. RSC Adv 2016. [DOI: 10.1039/c6ra14031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During replication, incorporation of G opposite Oz lesion is mainly responsible for G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|