1
|
Mihailovici R, Croitoriu A, Nedeff F, Nedeff V, Ochiuz L, Vasincu D, Popa O, Agop M, Moraru A, Costin D, Costuleanu M, Verestiuc L. Drug-Loaded Polymeric Particulated Systems for Ophthalmic Drugs Release. Molecules 2022; 27:molecules27144512. [PMID: 35889383 PMCID: PMC9323211 DOI: 10.3390/molecules27144512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug delivery to the anterior or posterior segments of the eye is a major challenge due to the protection barriers and removal mechanisms associated with the unique anatomical and physiological nature of the ocular system. The paper presents the preparation and characterization of drug-loaded polymeric particulated systems based on pre-emulsion coated with biodegradable polymers. Low molecular weight biopolymers (chitosan, sodium hyaluronate and heparin sodium) were selected due to their ability to attach polymer chains to the surface of the growing system. The particulated systems with dimensions of 190–270 nm and a zeta potential varying from −37 mV to +24 mV depending on the biopolymer charges have been obtained. Current studies show that particles release drugs (dexamethasone/pilocarpine/bevacizumab) in a safe and effective manner, maintaining therapeutic concentration for a longer period of time. An extensive modeling study was performed in order to evaluate the drug release profile from the prepared systems. In a multifractal paradigm of motion, nonlinear behaviors of a drug delivery system are analyzed in the fractal theory of motion, in order to correlate the drug structure with polymer. Then, the functionality of a SL(2R) type ”hidden symmetry” implies, through a Riccati type gauge, different ”synchronization modes” (period doubling, damped oscillations, quasi-periodicity and intermittency) during the drug release process. Among these, a special mode of Kink type, better reflects the empirical data. The fractal study indicated more complex interactions between the angiogenesis inhibitor Bevacizumab and polymeric structure.
Collapse
Affiliation(s)
- Ruxandra Mihailovici
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Alexandra Croitoriu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Florin Nedeff
- Department of Industrial Systems Engineering and Management, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Valentin Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania;
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Natural, Bioactive and Biocompatible Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Andreea Moraru
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Danut Costin
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Marcel Costuleanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Peptu CA, Băcăiță ES, Savin (Logigan) CL, Luțcanu M, Agop M. Hydrogels Based on Alginates and Carboxymethyl Cellulose with Modulated Drug Release-An Experimental and Theoretical Study. Polymers (Basel) 2021; 13:polym13244461. [PMID: 34961013 PMCID: PMC8703298 DOI: 10.3390/polym13244461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
New hydrogels films crosslinked with epichlorohydrin were prepared based on alginates and carboxymethyl cellulose with properties that recommend them as potential drug delivery systems (e.g., biocompatibility, low toxicity, non-immunogenicity, hemostatic activity and the ability to absorb large amounts of water). The characterization of their structural, morphological, swelling capacity, loading/release and drug efficiency traits proved that these new hydrogels are promising materials for controlled drug delivery systems. Further, a new theoretical model, in the framework of Scale Relativity Theory, was built with to offer insights on the release process at the microscopic level and to simplify the analysis of the release process.
Collapse
Affiliation(s)
- Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 71, Prof. Dr. Docent DimitrieMangeron Street, 700050 Iasi, Romania; (C.A.P.); (C.-L.S.)
| | - Elena Simona Băcăiță
- Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Bd. Prof. Dr. Docent Dimitrie Mangeron73, 700050 Iasi, Romania;
- Correspondence: or
| | - Corina-Lenuta Savin (Logigan)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 71, Prof. Dr. Docent DimitrieMangeron Street, 700050 Iasi, Romania; (C.A.P.); (C.-L.S.)
| | - Marian Luțcanu
- Materials Science Department, Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 71, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Bd. Prof. Dr. Docent Dimitrie Mangeron73, 700050 Iasi, Romania;
| |
Collapse
|
3
|
Arafat M, Sarfraz M, Bostanudin MF, Esmaeil A, Salam A, AbuRuz S. In Vitro and In Vivo Evaluation of Oral Controlled Release Formulation of BCS Class I Drug Using Polymer Matrix System. Pharmaceuticals (Basel) 2021; 14:929. [PMID: 34577629 PMCID: PMC8470007 DOI: 10.3390/ph14090929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Diltiazem hydrochloride is a calcium channel blocker, which belongs to the family of benzothiazepines. It is commonly used to treat hypertension and atrial fibrillation. Even though the drug has high solubility, its high permeability and rapid metabolism in the liver can limit the bioavailability and increase the dose frequencies for up to four times per day. This study focused on a polymer matrix system not only to control the drug release but also to prolong the duration of bioavailability. The polymer matrices were prepared using different ratios of poloxamer-188, hydroxypropyl methylcellulose, and stearyl alcohol. In vitro and in vivo assessments took place using 24 rabbits and the results were compared to commercially available product Tildiem® (60 mg tablet) as reference. Overall, the rate of drug release was sustained with the gradual increase of poloxamer-188 incorporated with hydroxypropyl methylcellulose and stearyl alcohol in the matrix system, achieving a maximum release period of 10 h. The oral bioavailability and pharmacokinetic parameters of diltiazem hydrochloride incorporated in polymer matrix system were similar to commercial reference Tildiem®. In conclusion, the combination of polymers can have a substantial effect on controlling and prolonging the drug release pattern. The outcomes showed that poloxamer-188 combined with hydroxypropyl methylcellulose and stearyl alcohol is a powerful matrix system for controlling release of diltiazem hydrochloride.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Mohammad F. Bostanudin
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Anna Esmaeil
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Aisha Salam
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Cadinoiu AN, Rata DM, Atanase LI, Mihai CT, Bacaita SE, Popa M. Formulations Based on Drug Loaded Aptamer-Conjugated Liposomes as a Viable Strategy for the Topical Treatment of Basal Cell Carcinoma-In Vitro Tests. Pharmaceutics 2021; 13:866. [PMID: 34208362 PMCID: PMC8231244 DOI: 10.3390/pharmaceutics13060866] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Topical liposomal drug formulations containing AS1411-aptamer conjugated liposomes were designed to deliver in a sustained way the 5-fluorouracil to the tumor site but also to increase the compliance of patients with basal cell carcinoma. The 5-fluorouracil penetrability efficiency through the Strat-M membrane and the skin irritation potential of the obtained topical liposomal formulations were evaluated in vitro and the Korsmeyer Peppas equation was considered as the most appropriate to model the drug release. Additionally, the efficiency of cytostatic activity for targeted antitumor therapy and the hemolytic capacity were performed in vitro. The obtained results showed that the optimal liposomal formulation is a crosslinked gel based on sodium alginate and hyaluronic acid containing AS1411-aptamer conjugated liposomes loaded with 5-fluorouracil, which appeared to have favorable biosafety effects and may be used as a new therapeutic approach for the topical treatment of basal cell carcinoma.
Collapse
Affiliation(s)
- Anca N. Cadinoiu
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Delia M. Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Leonard I. Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Cosmin T. Mihai
- Department of Experimental and Applied Biology, NIRDBS—Institute of Biological Research Iasi, 700107 Iasi, Romania;
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” Medicine and Pharmacy University of Iasi, 700454 Iasi, Romania
| | - Simona E. Bacaita
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| |
Collapse
|
5
|
Mihalache C, Rata DM, Cadinoiu AN, Patras X, Sindilar EV, Bacaita SE, Popa M, Atanase LI, Daraba OM. Bupivacaine‐loaded chitosan hydrogels for topical anesthesia in dentistry. POLYM INT 2020. [DOI: 10.1002/pi.6052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cristian Mihalache
- Faculty of Chemical Engineering and Environmental Protection ‘Cristofor Simionescu’ ‘Gheorghe Asachi’ Technical University of Iasi Iasi Romania
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| | - Delia M Rata
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| | - Anca N Cadinoiu
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| | - Xenia Patras
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| | - Eusebiu V Sindilar
- Faculty of Veterinary Medicine University of Agricultural Sciences and Veterinary Medicine Iasi Romania
| | - Simona E Bacaita
- Faculty of Machine Manufacturing and Industrial Management ‘Gheorghe Asachi’ Technical University of Iasi Iasi Romania
| | - Marcel Popa
- Faculty of Chemical Engineering and Environmental Protection ‘Cristofor Simionescu’ ‘Gheorghe Asachi’ Technical University of Iasi Iasi Romania
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
- Academy of Romanian Scientists Bucharest Romania
| | - Leonard I Atanase
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| | - Oana M Daraba
- Faculty of Medical Dentistry ‘Apollonia’ University of Iasi Iasi Romania
| |
Collapse
|
6
|
Poly(vinyl alcohol boric acid)-Diclofenac Sodium Salt Drug Delivery Systems: Experimental and Theoretical Studies. J Immunol Res 2020; 2020:3124304. [PMID: 32566687 PMCID: PMC7281821 DOI: 10.1155/2020/3124304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
The main aim of the paper was to simulate the drug release by a multifractal theoretical model, as a valuable method to assess the drug release mechanism. To do this, drug delivery films were prepared by mixing poly(vinyl alcohol boric acid) (PVAB) and diclofenac (DCF) sodium salt drug in different mass ratios from 90/10 to 70/30, in order to obtain drug delivery systems with different releasing rates. The different drug content of the three systems was confirmed by energy-dispersive spectroscopy (EDAX) analysis, and the encapsulation particularities were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarized optical microscopy (POM) techniques. The ability of the PVAB matrix to anchor the DCF was assessed by Fourier transform infrared (FTIR) spectroscopy. The in vitro release of the diclofenac sodium salt from the formulations was investigated in biomimetic conditions (pH = 7.4 and 37°C) by UV-Vis spectroscopy, measuring the absorbance of the drug at 275 nm and fitting the results on a previously drawn calibration curve. An estimation of the drug release kinetics was performed by fitting three traditional mathematical models on experimental release data. Further, the drug delivery was simulated by the fractal theory of motion, in which the release dynamics of the polymer-drug complex system is described through various Riccati-type "regimes." To explain such dynamics involved multifractal self-modulation in the form of period doubling, quasiperiodicity, intermittency, etc., as well as multifractal self-modulation of network type. Standard release dynamics were explained by multifractal behaviors of temporary kink type. The good correlation between the traditional mathematical models and the new proposed theoretical model demonstrated the validity of the multifractal model for the investigation of the drug release.
Collapse
|
7
|
Irimiciuc SA, Bulai G, Gurlui S, Agop M. On the separation of particle flow during pulse laser deposition of heterogeneous materials - A multi-fractal approach. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Anisotropy Influences on the Drug Delivery Mechanisms by Means of Joint Invariant Functions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:5748273. [PMID: 29081830 PMCID: PMC5610880 DOI: 10.1155/2017/5748273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022]
Abstract
In the frame of Higuchi's type functionality, this paper presents the anisotropy influences on the drug delivery mechanisms through the joint invariant functions to the simultaneous actions of the two SL(2R) isomorphic groups. Then, a new equation for drug delivery mechanism, independent of the type of polymer matrix and/or drug, is proposed.
Collapse
|