1
|
Valatoon S, Alipour M. Reaction rate constant: a theoretical description from local temperature. Phys Chem Chem Phys 2024; 26:14839-14846. [PMID: 38726725 DOI: 10.1039/d4cp01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Application of various descriptors based on electron density and its associated quantities to quantify chemical reactivity within the conceptual density functional theory has recently come into spotlight. Among others and particularly relevant to our study, local temperature based on electron density as well as kinetic energy density, as a measure of the kinetic energy of an electron moving in the Kohn-Sham potential of systems, should be mentioned. In this work, we propose to use the local temperature for describing the reaction rate constant, where our main idea originates from the point that the smaller the local temperature at the reaction center, the easier the electron removal, leading to a larger rate constant. On the basis of theoretical considerations, it is proved that the rate constant variations caused by the substituent effects can well be proportional to the local temperature at the reaction center. In order to numerically validate our proposed approach, we have taken the phenol derivatives with the available experimental rate constants of their O-methylation reaction as working models. The reason for this choice is that one of the most versatile approaches for labeling biologically active compounds with the 11C nuclide for positron emission tomography (PET) is methylation by methyl iodide including 11C nuclide, [11C]MeI, where methylation of phenolic oxygen with [11C]MeI is utilized to label some important tracers for PET studies. Our results unveil that the local temperature changes at the reaction center of the aforementioned reaction are reasonably correlated with the rate constant variations. Hopefully, incorporating the proposed correlations between the local temperature and the kinetics data into a computer control algorithm not only provides a simple tool for predicting the rate constant of the O-methylation reaction for other substituted phenols, but also, as a part of the chemical artificial intelligence, the optimum [11C]MeI labeling conditions for a wide variety of phenol derivatives can be controlled.
Collapse
Affiliation(s)
- Saba Valatoon
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
2
|
Dihydropyrazole-Carbohydrazide Derivatives with Dual Activity as Antioxidant and Anti-Proliferative Drugs on Breast Cancer Targeting the HDAC6. Pharmaceuticals (Basel) 2022; 15:ph15060690. [PMID: 35745608 PMCID: PMC9230091 DOI: 10.3390/ph15060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with –Br, –Cl, and –OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at μM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.
Collapse
|
3
|
Nano-saturn and ExBox systems: Dominant role of steric, exchange-correlation, and electrostatic effects. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Alipour M, Fallahzadeh P. On the role of steric and exchange–correlation effects in halogenated complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02581c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Parisa Fallahzadeh
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
5
|
Alipour M, Khorrami M. Pauli energy and information-theoretic approach for evaluating dynamic and nondynamic electron correlation. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02689-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Qu HJ, Yuan L, Jia CX, Yu HT, Xu H. DFT investigation of hydrogen atom-abstraction reactions of NHC-boranes by various carbon-centered radicals: barriers and correlation analyses. RSC Adv 2020; 10:34752-34763. [PMID: 35514392 PMCID: PMC9057721 DOI: 10.1039/d0ra07638d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, we employed a quantum-mechanical computational method to investigate the hydrogen-atom abstraction reactions of two nitrogen heterocyclic carbene boranes (NHC-boranes), NHC-BH3 and NHC-BH2CN, by a series of carbon-centered radicals bearing various substituents. We explored the degree of correlation of the activation and free energy barriers to their components. Furthermore, we also investigated the effects of the radical and substituent sizes, nucleophilicity/electrophilicity indices, and the spin density distribution of the radical reactants on the three fundamental barriers and the thermal contribution of the reaction energy to the kinetic barrier. Using the generated data, we assessed the abilities of the various radical reactants to abstract the hydrogen atom from NHC-boranes. Further, we performed a similar analysis after dividing those radical reactants into four groups, which were classified based on the dominant factor affecting their electronic density distribution, which involves the inductive effect, conjugation, hyperconjugation, and the feedback of lone-pair electrons. The results and conclusions of this investigation not only provide insight into the relationships between some of the key kinetic and thermodynamic parameters, which is useful for understanding the dynamics of such hydrogen-abstraction reactions, but also provide information for selecting suitable radical reactants for further experimental investigations.
Collapse
Affiliation(s)
- Hong-Jie Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 P. R. China
| | - Lang Yuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Cai-Xin Jia
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
7
|
Alipour M, Kargar K. Anionic behavior and single-molecule crystal in fullerene confinements: A contribution from DFT energy decomposition and cooperativity analyses. J Comput Chem 2020; 41:1912-1920. [PMID: 32506442 DOI: 10.1002/jcc.26362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
The recently proposed systems of various anions (A) confined inside C60 , A- @ C60 , which in turn behave as large and stable anions, (A @ C60 )- , can find potential applications in various fields. On the other hand, it has earlier been shown that from the dihalogens (X2 ) encapsulated C60 , X2 @ C60 , only F2 @ C60 can be introduced as a system in which the cage acts as a cation C60 + and interacts with an endohedral anion, F2 - , forming the F2 - @ C60 + as a single-molecule crystal compound. In this work, two density functional theory energy decomposition analysis (EDA) schemes, where in one of them the noninteracting kinetic, electrostatic, and exchange-correlation energies come into play while another scheme, called as EDA-SBL, includes the steric, electrostatic, and quantum effects as essential ingredients (S. Liu, J. Chem. Phys. 2007, 126, 244103), are utilized to find out what energetic components govern the unique characteristics of the (A @ C60 )- and X2 @ C60 confinements. It is shown that the noninteracting kinetic energy and steric energies have important contributions to the total interaction energies for the considered systems. However, there are other confinements for which the electrostatic and exchange-correlation contributions play also imperative roles. Furthermore, we find reasonable correlations between interaction energies and their components as well as the energetic components themselves, leading to an alternative EDA scheme including the noninteracting kinetic, steric, and electrostatic energies for investigations on other endohedral fullerenes. Extending our analyses to large size confinements, Cl- @ Cn with n up to 90 as illustrative examples, the quantitative cooperativity concept is also explored, where the positive and negative cooperativity profiles unveil a specific size of the anionic confinements to form the most stable large anion.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Kimia Kargar
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Matrodi A, Noorizadeh S. N-Derivatives of Shannon entropy density as response functions. Phys Chem Chem Phys 2020; 22:21535-21542. [PMID: 32959037 DOI: 10.1039/d0cp03808c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The exact first and second order partial derivatives of Shannon entropy density with respect to the number of electrons at constant external potential are introduced as new descriptors for prediction of the active sites of a molecule. The derivatives, which are a measure of the inhomogeneity of electron density, are calculated both exactly (from analytical forms) and approximately (using the finite difference method) for some molecular systems. According to the maximum entropy principle, the extreme value of the first order derivative on the surface of a given molecule should determine the active sites of the molecule in electrophilic and nucleophilic attack. The second order derivative indicates where the Shannon entropy is more concentrated or depleted during the electron exchange. Although these derivatives on the surfaces of helium and neon atoms are uniform, the corresponding values for argon, krypton and xenon atoms are not. This could explain the greater tendency of heavy noble gas atoms to form stable compounds. A dual descriptor is also defined as the difference between the left and right first order derivatives of Shannon entropy density, which allows one to simultaneously predict the preferable sites for electrophilic and nucleophilic attack over the system at point r. Therefore, the reactivity of an atom in a molecule requires the non-uniformity of the first and second order derivatives of Shannon entropy density on the surface of that atom.
Collapse
Affiliation(s)
- Abdolkarim Matrodi
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Siamak Noorizadeh
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
9
|
Rong C, Wang B, Zhao D, Liu S. Information‐theoretic approach in density functional theory and its recent applications to chemical problems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) Hunan Normal University Changsha P.R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Bin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Dongbo Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing P.R. China
| | - Shubin Liu
- Research Computing Centre University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
10
|
Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. ATOMS 2019. [DOI: 10.3390/atoms7030070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the electronic structures of atomic and molecular systems deepens our understanding of the desired system. In particular, several information-theoretic quantities, such as Shannon entropy, have been applied to quantify the extent of electron delocalization for the ground state of various systems. To explore excited states, we calculated Shannon entropy and two of its one-parameter generalizations, Rényi entropy of order α and Tsallis entropy of order α , and Onicescu Information Energy of order α for four low-lying singly excited states (1s2s 1 S e , 1s2s 3 S e , 1s3s 1 S e , and 1s3s 3 S e states) of helium. This paper compares the behavior of these three quantities of order 0.5 to 9 for the ground and four excited states. We found that, generally, a higher excited state had a larger Rényi entropy, larger Tsallis entropy, and smaller Onicescu information energy. However, this trend was not definite and the singlet–triplet reversal occurred for Rényi entropy, Tsallis entropy and Onicescu information energy at a certain range of order α .
Collapse
|
11
|
On the theoretical rationalization of intermolecular interactions: insights from DFT energy partitioning schemes. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2349-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Alipour M, Taravat F. Efficiency of electrostatic and steric forces in theoretical appreciating chemical reactivity-related phenomena. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Faezeh Taravat
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Alipour M, Badooei Z. Toward Electron Correlation and Electronic Properties from the Perspective of Information Functional Theory. J Phys Chem A 2018; 122:6424-6437. [DOI: 10.1021/acs.jpca.8b05703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Zeinab Badooei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|