1
|
Ganoe B, Shee J. On the notion of strong correlation in electronic structure theory. Faraday Discuss 2024; 254:53-75. [PMID: 39072670 DOI: 10.1039/d4fd00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Strong correlation has been said to have many faces, and appears to have many synonyms of questionable suitability. In this work we aim not to define the term once and for all, but to highlight one possibility that is both rigorously defined and physically transparent, and remains so in reference to molecules and quantum lattice models. We survey both molecular examples - hydrogen systems (Hn, n = 2, 4, 6), Be2, H-He-H, and benzene - and the half-filled Hubbard model over a range of correlation regimes. Various quantities are examined including the extent of spin symmetry breaking in correlated single-reference wave functions, energetic ratios inspired by the Hubbard model and the Virial theorem, and metrics derived from the one- and two-electron reduced density matrices (RDMs). The trace and the square norm of the cumulant of the two-electron reduced density matrix capture what may well be defined as strong correlation. Accordingly, strong correlation is understood as a statistical dependence between two electrons, and is distinct from the concepts of "correlation energy" and more general than entanglement quantities that require a partitioning of a quantum system into distinguishable subspaces. This work enables us to build a bridge between a rigorous and quantifiable regime of strong electron correlation and more familiar chemical concepts such as anti-aromaticity in the context of Baird's rule.
Collapse
Affiliation(s)
- Brad Ganoe
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - James Shee
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Dunning TH, Xu LT. Dynamical electron correlation and the chemical bond. III. Covalent bonds in the A 2 molecules (A = C-F). Phys Chem Chem Phys 2024; 26:24809-24820. [PMID: 39300949 DOI: 10.1039/d4cp01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
For most molecules the spin-coupled generalized valence bond (SCGVB) wavefunction accounts for the effects of non-dynamical electron correlation. The remaining errors in the prediction of molecular properties and the outcomes of molecular processes are then solely due to dynamical electron correlation. In this article we extend our previous studies of the effects of dynamical electron correlation on the potential energy curves and spectroscopic constants of the AH and AF (A = B-F) molecules to the homonuclear diatomic molecules, A2 (A = C-F). At large R the magnitude of ΔEDEC(R), the correlation energy of the molecule relative to that in the atoms, increases nearly exponentially with decreasing R, just as we found in the AH and AF molecules. But, as R continues to decrease the rate of increase in the magnitude of ΔEDEC(R) slows, eventually leading to a minimum for C2-O2. Examination of the SCGVB wavefunction for the N2 molecule around the minimum in ΔEDEC(R) did not reveal a clear cause for this puzzling behavior. As before, the changes in ΔEDEC(R) around Re were found to have an uneven effect on the spectroscopic constants of the A2 molecules.
Collapse
Affiliation(s)
- Thom H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Lu T Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
3
|
Šulka M, Šulková K, Dubecký M. Unveiling hidden dynamic correlations in CASSCF correlation energies by Hartree-Fock nodes. J Chem Phys 2024; 161:114112. [PMID: 39287068 DOI: 10.1063/5.0223733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
We have recently introduced an original method for sharply partitioning the correlation energy into dynamic and non-dynamic contributions. This method is based on the node of the Hartree-Fock (HF) Slater determinant and the stochastic projector fixed-node diffusion Monte Carlo (FNDMC) method [Šulka et al., J. Chem. Theory Comput. 19, 8147 (2023)]. This approach addresses the challenge of dissecting correlation energy in quantum chemistry. Here, we present the first application of this technique to explore CASSCF correlation energy contributions in selected molecular systems such as BH, FH, F2, and H2-H2. The results show that correlation energies derived from the full-valence active space CASSCF method, often believed to describe mostly non-dynamic correlation effects, contain an extraneous, unwanted, system-dependent component that belongs to the dynamic correlation energy. The findings suggest that the new HF-node/FNDMC-based electron correlation energy decomposition method provides a useful complementary tool, enabling the detection of inherent challenges in distinguishing between dynamic and non-dynamic contributions to correlation energies within methods where precise dissection of these effects is not possible.
Collapse
Affiliation(s)
- Martin Šulka
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, 91724 Trnava, Slovakia
| | - Katarína Šulková
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, 91724 Trnava, Slovakia
| | - Matúš Dubecký
- Department of Physics, Faculty of Science, University of Ostrava, 30. Dubna 22, 70103 Ostrava, Czech Republic
| |
Collapse
|
4
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2024; 26:13884-13908. [PMID: 38661329 DOI: 10.1039/d3cp06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
5
|
Xu X, Soriano-Agueda L, López X, Ramos-Cordoba E, Matito E. All-Purpose Measure of Electron Correlation for Multireference Diagnostics. J Chem Theory Comput 2024; 20:721-727. [PMID: 38157841 PMCID: PMC10809408 DOI: 10.1021/acs.jctc.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
We present an analytical relationship between two natural orbital occupancy-based indices, I N D ¯ and INDmax, and two established electron correlation metrics: the leading term of a configuration interaction expansion, c0, and the D2 diagnostic. Numerical validation revealed that I N D ¯ and INDmax can effectively substitute for c0 and D2, respectively. These indices offer three distinct advantages: (i) they are universally applicable across all electronic structure methods, (ii) their interpretation is more intuitive, and (iii) they can be readily incorporated into the development of hybrid electronic structure methods. Additionally, we draw a distinction between correlation measures and correlation diagnostics, establishing MP2 and CCSD numerical thresholds for INDmax, which are to be used as a multireference diagnostic. Our findings further demonstrate that establishing thresholds for other electronic structure methods can be easily accomplished using small data sets.
Collapse
Affiliation(s)
- Xiang Xu
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Luis Soriano-Agueda
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Xabier López
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Eloy Ramos-Cordoba
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Eduard Matito
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Rodríguez-Jiménez JA, Carreras A, Casanova D. Small-Occupation Density Functional Correlation Energy Correction to Wave Function Approximations. J Chem Theory Comput 2024. [PMID: 38227943 DOI: 10.1021/acs.jctc.3c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this work, we introduce a novel hybrid approach, termed WFT-soDFT, designed to seamlessly incorporate DFT correlation into wave function ansatzes. This is achieved through a partitioning of the orbital space, distinguishing between large and small natural occupation numbers associated with wave function theory (WFT) and DFT correlation, respectively. The method uses a novel criterion for partitioning the orbital space and mapping the electron density in natural orbitals with a small occupation with the correlation energy of fast electrons within the homogeneous electron gas. Central to our approach is the introduction of a separation parameter ν, the choice of the WFT approach, and the correlation functional. Here, we combine the RASCI wave function with hole and particle truncation with a local density correlation functional to only account for small-occupation correlation energy. We investigate the performance of the method in the study of small but challenging chemical systems, for which WFT-soDFT demonstrates notable improvements over pristine wave function calculations. These findings collectively highlight the potential of the WFT-soDFT approach as a computationally affordable strategy to improve the accuracy of WFT electronic structure calculations.
Collapse
Affiliation(s)
- José Aarón Rodríguez-Jiménez
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Euskadi, Spain
| | - Abel Carreras
- Multiverse Computing, 20008 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
7
|
Šulka M, Šulková K, Jurečka P, Dubecký M. Dynamic and Nondynamic Electron Correlation Energy Decomposition Based on the Node of the Hartree-Fock Slater Determinant. J Chem Theory Comput 2023; 19:8147-8155. [PMID: 37942987 DOI: 10.1021/acs.jctc.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Distinguishing between dynamic and nondynamic electron correlation energy is a fundamental concept in quantum chemistry. It can be challenging to make a clear distinction between the two types of correlation energy or to determine their actual contributions in specific cases using wave function theory. This is because both single-reference and multireference methods cover both types of correlation energy to some extent. Fixed-node diffusion quantum Monte Carlo (FNDMC) accurately covers dynamic correlations, but it is limited in overall accuracy by the node of the trial wave function. We introduce a methodology for partitioning an exact electron correlation energy into its dynamic and nondynamic components. This is accomplished by restricting a ground-state solution from sharing its node with a spin-restricted Hartree-Fock Slater determinant. The FNDMC method is used as a tool to conveniently project out a lowest-energy state obeying such a boundary condition. The proposed approach provides an unambiguous and useful procedure for separating electron correlation energy, as demonstrated on multiple systems, including the He atom, bond breaking of H2, the parametric H2-H2 system, the Be-Ne atomic series with low- and high-spin states for C, N, and O atoms, and small molecules such as BH, HF, and CO at both equilibrium and elongated configurations, respectively.
Collapse
Affiliation(s)
- Martin Šulka
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, Trnava 917 24, Slovakia
| | - Katarína Šulková
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, Trnava 917 24, Slovakia
| | - Petr Jurečka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, Olomouc 779 00, Czech Republic
| | - Matúš Dubecký
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, Trnava 917 24, Slovakia
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, Ostrava 701 03, Czech Republic
| |
Collapse
|
8
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Petersen T, Bhattacharyya P, Rößler UK, Hozoi L. Resonating holes vs molecular spin-orbit coupled states in group-5 lacunar spinels. Nat Commun 2023; 14:5218. [PMID: 37633997 PMCID: PMC10460446 DOI: 10.1038/s41467-023-40811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023] Open
Abstract
The valence electronic structure of magnetic centers is one of the factors that determines the characteristics of a magnet. This may refer to orbital degeneracy, as for jeff = 1/2 Kitaev magnets, or near-degeneracy, e.g., involving the third and fourth shells in cuprate superconductors. Here we explore the inner structure of magnetic moments in group-5 lacunar spinels, fascinating materials featuring multisite magnetic units in the form of tetrahedral tetramers. Our quantum chemical analysis reveals a very colorful landscape, much richer than the single-electron, single-configuration description applied so far to all group-5 GaM4X8 chalcogenides, and clarifies the basic multiorbital correlations on M4 tetrahedral clusters: while for V strong correlations yield a wave-function that can be well described in terms of four V4+V3+V3+V3+ resonant valence structures, for Nb and Ta a picture of dressed molecular-orbital jeff = 3/2 entities is more appropriate. These internal degrees of freedom likely shape vibronic couplings, phase transitions, and the magneto-electric properties in each of these systems.
Collapse
Affiliation(s)
- Thorben Petersen
- Institute for Theoretical Solid State Physics, Leibniz IFW Dresden, Helmholtzstraße 20, Dresden, D-01069, Germany.
| | - Pritam Bhattacharyya
- Institute for Theoretical Solid State Physics, Leibniz IFW Dresden, Helmholtzstraße 20, Dresden, D-01069, Germany
| | - Ulrich K Rößler
- Institute for Theoretical Solid State Physics, Leibniz IFW Dresden, Helmholtzstraße 20, Dresden, D-01069, Germany
| | - Liviu Hozoi
- Institute for Theoretical Solid State Physics, Leibniz IFW Dresden, Helmholtzstraße 20, Dresden, D-01069, Germany.
| |
Collapse
|
10
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Izsák R, Ivanov AV, Blunt NS, Holzmann N, Neese F. Measuring Electron Correlation: The Impact of Symmetry and Orbital Transformations. J Chem Theory Comput 2023; 19:2703-2720. [PMID: 37022051 PMCID: PMC10210250 DOI: 10.1021/acs.jctc.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/07/2023]
Abstract
In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and discuss its behavior with respect to the choice of the N-electron and the one-electron basis. The impact of symmetry is discussed, and we emphasize that the distinction among determinants, configuration state functions and configurations as reference functions is useful because the latter incorporate spin-coupling into the reference and should thus reduce the complexity of the wave function expansion. The corresponding notions of single determinant, single spin-coupling and single configuration wave functions are discussed and the effect of orbital rotations on the multireference character is reviewed by analyzing a simple model system. In molecular systems, the extent of correlation effects should be limited by finite system size and in most cases the appropriate choices of one-electron and N-electron bases should be able to incorporate these into a low-complexity reference function, often a single configurational one.
Collapse
Affiliation(s)
- Róbert Izsák
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Aleksei V. Ivanov
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Nick S. Blunt
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Nicole Holzmann
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Frank Neese
- Max-Planck
Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Naim C, Besalú-Sala P, Zaleśny R, Luis JM, Castet F, Matito E. Are Accelerated and Enhanced Wave Function Methods Accurate to Compute Static Linear and Nonlinear Optical Properties? J Chem Theory Comput 2023; 19:1753-1764. [PMID: 36862983 DOI: 10.1021/acs.jctc.2c01212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Key components of organic-based electro-optic devices are challenging to design or optimize because they exhibit nonlinear optical responses, which are difficult to model or rationalize. Computational chemistry furnishes the tools to investigate extensive collections of molecules in the quest for target compounds. Among the electronic structure methods that provide static nonlinear optical properties (SNLOPs), density functional approximations (DFAs) are often preferred because of their low cost/accuracy ratio. However, the accuracy of the SNLOPs critically depends on the amount of exact exchange and electron correlation included in the DFA, precluding the reliable calculation of many molecular systems. In this scenario, wave function methods such as MP2, CCSD, and CCSD(T) constitute a reliable alternative to compute SNLOPs. Unfortunately, the computational cost of these methods significantly restricts the size of molecules to study, a limitation that hampers the identification of molecules with significant nonlinear optical responses. This paper analyzes various flavors and alternatives to MP2, CCSD, and CCSD(T) methods that either drastically reduce the computational cost or improve their performance but were scarcely and unsystematically employed to compute SNLOPs. In particular, we have tested RI-MP2, RIJK-MP2, RIJCOSX-MP2 (with GridX2 and GridX4 setups), LMP2, SCS-MP2, SOS-MP2, DLPNO-MP2, LNO-CCSD, LNO-CCSD(T), DLPNO-CCSD, DLPNO-CCSD(T0), and DLPNO-CCSD(T1). Our results indicate that all these methods can be safely employed to calculate the dipole moment and the polarizability with average relative errors below 5% with respect to CCSD(T). On the other hand, the calculation of higher-order properties represents a challenge for LNO and DLPNO methods, which present severe numerical instabilities in computing the single-point field-dependent energies. RI-MP2, RIJK-MP2, or RIJCOSX-MP2 are cost-effective methods to compute first and second hyperpolarizabilities with a marginal average error with respect to canonical MP2 (up to 5% for β and up to 11% for γ). More accurate hyperpolarizabilities can be obtained with DLPNO-CCSD(T1); however, this method cannot be employed to obtain reliable second hyperpolarizabilities. These results open the way to obtain accurate nonlinear optical properties at a computational cost that can compete with current DFAs.
Collapse
Affiliation(s)
- Carmelo Naim
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, 48011 Bilbao, Euskadi, Spain
| |
Collapse
|
13
|
Duan C, Nandy A, Terrones GG, Kastner DW, Kulik HJ. Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores. JACS AU 2023; 3:391-401. [PMID: 36873700 PMCID: PMC9976347 DOI: 10.1021/jacsau.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/18/2023]
Abstract
Transition-metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and nontoxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have well-defined ground states and optimal target absorption energies in the visible region. Machine learning (ML) accelerated discovery could overcome such challenges by enabling the screening of a larger space but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of "Jacob's ladder". To accelerate the discovery of complexes with absorption energies in the visible region while minimizing the effect of low-lying excited states, we use two-dimensional (2D)efficient global optimization to sample candidate low-spin chromophores from multimillion complex spaces. Despite the scarcity (i.e., ∼0.01%) of potential chromophores in this large chemical space, we identify candidates with high likelihood (i.e., >10%) of computational validation as the ML models improve during active learning, representing a 1000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-dependent density functional theory verify that 2/3 of candidates have the desired excited-state properties. The observation that constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of our construction of a realistic design space and active learning approach.
Collapse
Affiliation(s)
- Chenru Duan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gianmarco G. Terrones
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
McCutcheon JN, Clabo DA. An atoms-in-molecules characterization of the nature of the OO bond in peroxides and nitroxide dimers. J Comput Chem 2023; 44:1278-1290. [PMID: 36732939 DOI: 10.1002/jcc.27082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 02/04/2023]
Abstract
The quantum theory of atoms-in-molecules (QTAIM) method is used to examine the OO bond in peroxides (RO-OR) and nitroxide dimers (R2 NO-ONR2 ), including Fremy's salt. The electron density (ρ), electron kinetic energy density [K(ρ)], and Laplacian of the electron density (∇2 ρ) at bond critical points characterize the nature of the OO bond. The data distinguish OO bonding of two kinds. Large values of ρ and positive ∇2 ρ and K(ρ) suggest that simple peroxides have charge-shift bonds. Nitroxide dimers, with smaller ρ, positive ∇2 ρ, and near-zero K(ρ), show a lack of shared electron density, suggesting there is no conventional OO bonding in these molecules. QTAIM analysis at the B3LYP/6-311+G(d,p) level of theory gives results in agreement with valence-bond theory and X-ray diffraction characterizations of peroxide OO bonds as charge-shift bonds. In contrast, CCSD/cc-pVDZ calculations fail to agree with previous results because of an insufficient, single-determinant treatment of the charge-shift bond.
Collapse
Affiliation(s)
- Jessica N McCutcheon
- Department of Chemistry, Francis Marion University, Florence, South Carolina, USA
| | - D Allen Clabo
- Department of Chemistry, Francis Marion University, Florence, South Carolina, USA
| |
Collapse
|
15
|
Cho Y, Nandy A, Duan C, Kulik HJ. DFT-Based Multireference Diagnostics in the Solid State: Application to Metal-Organic Frameworks. J Chem Theory Comput 2023; 19:190-197. [PMID: 36548116 DOI: 10.1021/acs.jctc.2c01033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When a many-body wave function of a system cannot be captured by a single determinant, high-level multireference (MR) methods are required to properly explain its electronic structure. MR diagnostics to estimate the magnitude of such static correlation have been primarily developed for molecular systems and range from low in computational cost to as costly as the full MR calculation itself. We report the first application of low-cost MR diagnostics based on the fractional occupation number calculated with finite-temperature DFT to solid-state systems. To compare the behavior of the diagnostics on solids and molecules, we select metal-organic frameworks (MOFs) as model materials because their reticular nature provides an intuitive way to identify molecular derivatives. On a series of closed-shell MOFs, we demonstrate that the DFT-based MR diagnostics are equally applicable to solids as to their molecular derivatives. The magnitude and spatial distribution of the MR character of a MOF are found to have a good correlation with those of its molecular derivatives, which can be calculated much more affordably in comparison to those of the full MOF. The additivity of MR character discussed here suggests the set of molecular derivatives to be a good representation of a MOF for both MR detection and ultimately for MR corrections, facilitating accurate and efficient high-throughput screening of MOFs and other porous solids.
Collapse
Affiliation(s)
- Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
16
|
Yuan S, Chang Y, Wagner LK. Quantification of electron correlation for approximate quantum calculations. J Chem Phys 2022; 157:194101. [DOI: 10.1063/5.0119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
State-of-the-art many-body wave function techniques rely on heuristics to achieve high accuracy at an attainable computational cost to solve the many-body Schrödinger equation. By far, the most common property used to assess accuracy has been the total energy; however, total energies do not give a complete picture of electron correlation. In this work, we assess the von Neumann entropy of the one-particle reduced density matrix (1-RDM) to compare selected configuration interaction (CI), coupled cluster, variational Monte Carlo, and fixed-node diffusion Monte Carlo for benchmark hydrogen chains. A new algorithm, the circle reject method, is presented, which improves the efficiency of evaluating the von Neumann entropy using quantum Monte Carlo by several orders of magnitude. The von Neumann entropy of the 1-RDM and the eigenvalues of the 1-RDM are shown to distinguish between the dynamic correlation introduced by the Jastrow and the static correlation introduced by determinants with large weights, confirming some of the lore in the field concerning the difference between the selected CI and Slater–Jastrow wave functions.
Collapse
Affiliation(s)
- Shunyue Yuan
- Department of Physics, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Yueqing Chang
- Department of Physics, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Lucas K. Wagner
- Department of Physics, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
17
|
Casademont‐Reig I, Soriano‐Agueda L, Ramos‐Cordoba E, Torrent‐Sucarrat M, Matito E. Reply to the Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring”**. Angew Chem Int Ed Engl 2022; 61:e202206836. [DOI: 10.1002/anie.202206836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Irene Casademont‐Reig
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Department of General Chemistry (ALGC) Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | | | - Eloy Ramos‐Cordoba
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Miquel Torrent‐Sucarrat
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
- Department of Organic Chemistry I Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) 20018 Donostia Euskadi Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
| |
Collapse
|
18
|
Lew-Yee JFH, M. del Campo J. Charge delocalization error in Piris Natural Orbital Functionals. J Chem Phys 2022; 157:104113. [DOI: 10.1063/5.0102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Piris Natural Orbital Functionals (PNOF) have been recognized as a low-scaling alternative to study strong correlated systems. In this work, we address the performance of the fifth functional (PNOF5) and the seventh functional (PNOF7) to deal with another common problem, the charge delocalization error. The effects of this problem can be observed in charged systems of repeated well-separated fragments, where the energy should be the sum of the charged and neutral fragments, regardless of how the charge is distributed. In practice, an energetic overstabilization of fractional charged fragments leads to a preference for having the charge delocalized throughout the system. To establish the performance of PNOF functionals regarding charge delocalization error, charged chains of helium atoms and the W4-17-MR set molecules were used as base fragments and their energy, charge distribution and correlation regime were studied. It was found that PNOF5 prefers localized charge distributions, while PNOF7 improves the treatment of interpair static correlation and tends to the correct energetic limit for several cases, although a preference for delocalized charge distributions may arise in highly strong correlation regimes. Overall, it is concluded that PNOF functionals can simultaneously deal with static correlation and charge delocalization errors, resulting in a promising choice to study charge-related problems.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México Facultad de Química, Mexico
| | - Jorge M. del Campo
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
19
|
Duan C, Ladera AJ, Liu JCL, Taylor MG, Ariyarathna IR, Kulik HJ. Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character across Known Transition Metal Complex Ligands. J Chem Theory Comput 2022; 18:4836-4845. [PMID: 35834742 DOI: 10.1021/acs.jctc.2c00468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate virtual high-throughput screening (VHTS) of transition metal complexes (TMCs) remains challenging due to the possibility of high multireference (MR) character that complicates property evaluation. We compute MR diagnostics for over 5,000 ligands present in previously synthesized octahedral mononuclear transition metal complexes in the Cambridge Structural Database (CSD). To accomplish this task, we introduce an iterative approach for consistent ligand charge assignment for ligands in the CSD. Across this set, we observe that the MR character correlates linearly with the inverse value of the averaged bond order over all bonds in the molecule. We then demonstrate that ligand additivity of the MR character holds in TMCs, which suggests that the TMC MR character can be inferred from the sum of the MR character of the ligands. Encouraged by this observation, we leverage ligand additivity and develop a ligand-derived machine learning representation to train neural networks to predict the MR character of TMCs from properties of the constituent ligands. This approach yields models with excellent performance and superior transferability to unseen ligand chemistry and compositions.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adriana J Ladera
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian C-L Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Isuru R Ariyarathna
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Casademont‐Reig I, Soriano‐Agueda L, Ramos‐Cordoba E, Torrent‐Sucarrat M, Matito E. Reply to the Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring”**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Irene Casademont‐Reig
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Department of General Chemistry (ALGC) Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | | | - Eloy Ramos‐Cordoba
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Miquel Torrent‐Sucarrat
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
- Department of Organic Chemistry I Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) 20018 Donostia Euskadi Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
| |
Collapse
|
21
|
Rosenboom J, Chojetzki L, Suhrbier T, Rabeah J, Villinger A, Wustrack R, Bresien J, Schulz A. Radical Reactivity of the Biradical [⋅P(μ-NTer) 2 P⋅] and Isolation of a Persistent Phosphorus-Cantered Monoradical [⋅P(μ-NTer) 2 P-Et]. Chemistry 2022; 28:e202200624. [PMID: 35445770 PMCID: PMC9322606 DOI: 10.1002/chem.202200624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/06/2022]
Abstract
The activation of C-Br bonds in various bromoalkanes by the biradical [⋅P(μ-NTer)2 P⋅] (1) (Ter=2,6-bis-(2,4,6-trimethylphenyl)-phenyl) is reported, yielding trans-addition products of the type [Br-P(μ-NTer)2 P-R] (2), so-called 1,3-substituted cyclo-1,3-diphospha-2,4-diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted cyclo-1,3-diphospha-2,4-diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in-situ detection of the phosphorus-centered monoradical [⋅P(μ-NTer)2 P-R].< To provide further evidence for the radical mechanism, [⋅P(μ-NTer)2 P-Et] (3Et⋅) was synthesized directly by reduction of the bromoethane addition product [Br-P(μ-NTer)2 P-Et] (2 a) with magnesium, resulting in the formation of the persistent phosphorus-centered monoradical [⋅P(μ-NTer)2 P-Et], which could be isolated and fully characterized, including single-crystal X-ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ-NTer)2 P-Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ-NTer)2 P⋅] (1) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ-NTer)2 P⋅] with EtBr. In the field of hetero-cyclobutane-1,3-diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P-centered biradicals and P-centered monoradicals in terms of radical reactivity.
Collapse
Affiliation(s)
- Jan Rosenboom
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Lukas Chojetzki
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Tim Suhrbier
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Alexander Villinger
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Ronald Wustrack
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jonas Bresien
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Axel Schulz
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
22
|
Xu LT, Dunning TH. Dynamical electron correlation and the chemical bond. I. Covalent bonds in AH and AF (A = B-F). J Chem Phys 2022; 157:014107. [DOI: 10.1063/5.0093414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dynamical electron correlation has a major impact on the computed values of molecular properties and the energetics of molecular processes. The present study focused on the effect of dynamical electron correlation on the spectroscopic constants, ( Re , ωe , De ) and potential energy curves, Δ E( R), of the covalently-bound AH and AF molecules, A = B-F. The changes in the spectroscopic constants, (Δ Re , Δωe , Δ De ) caused by dynamical correlation are erratic and, at times, even surprising. These changes could be understood based on the dependence of the dynamical electron correlation energies of the AH and AF molecules as a function of the bond distance, i.e., Δ EDEC( R). At large R, the magnitude of Δ EDEC( R) increases nearly exponentially with decreasing R, but this increase slows as R continues to decrease and, in many cases, even reverses at very short R. The changes in Δ EDEC( R) in the region around Re were as unexpected as they were surprising, e.g., distinct minima and maxima were found in the curves of Δ EDEC( R) for the most polar molecules. The variations in Δ EDEC( R) for R ≲ Re are directly correlated with major changes in the electronic structure of the molecules as revealed by a detailed analysis of the SCGVB wave function. The results reported here indicate that we have much to learn about the nature of dynamical electron correlation and its effect on the chemical bond and molecular properties and processes.
Collapse
Affiliation(s)
- Lu T. Xu
- University of Washington, United States of America
| | - Thom H. Dunning
- Department of Chemistry, University of Washington, United States of America
| |
Collapse
|
23
|
Huang D, Ying F, Chen S, Zhou C, Su P, Wu W. Metal-Ligand Bonds in Rare Earth Metal-Biphenyl Complexes. Inorg Chem 2022; 61:8135-8143. [PMID: 35588219 DOI: 10.1021/acs.inorgchem.2c00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of theoretical methods, including density functional theory, multiconfiguration molecular orbital theory, and ab initio valence bond theory, are devoted to understanding the metal-ligand bonds in M-BP (BP = biphenyl; M = Sc, Y, or La) complexes. Different from most transition metal-BP complexes, the most stable metal-biphenyl conformers are not half-sandwich but clamshell. Energy decomposition analysis results reveal that the M-BP bonds in the clamshell conformers possess extra-large orbital relaxation. According to the wave function analysis, 2-fold donations and 2-fold back-donations exist in the clamshell M-BP bonds. The back-donations from M to BP are quite strong, while donations from BP to M are quite weak. Our work improves our understanding of the metal-ligand bonds, which can be considered as the "reversed" Dewar-Chatt-Duncanson model.
Collapse
Affiliation(s)
- Dajiang Huang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fuming Ying
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sifeng Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Zhou
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
24
|
Duan C, Chu DBK, Nandy A, Kulik HJ. Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost. Chem Sci 2022; 13:4962-4971. [PMID: 35655882 PMCID: PMC9067623 DOI: 10.1039/d2sc00393g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high-throughput screening (VHTS). Despite development of numerous MR diagnostics, the extent to which a single value of such a diagnostic indicates the MR effect on a chemical property prediction is not well established. We evaluate MR diagnostics for over 10 000 transition-metal complexes (TMCs) and compare to those for organic molecules. We observe that only some MR diagnostics are transferable from one chemical space to another. By studying the influence of MR character on chemical properties (i.e., MR effect) that involve multiple potential energy surfaces (i.e., adiabatic spin splitting, ΔE H-L, and ionization potential, IP), we show that differences in MR character are more important than the cumulative degree of MR character in predicting the magnitude of an MR effect. Motivated by this observation, we build transfer learning models to predict CCSD(T)-level adiabatic ΔE H-L and IP from lower levels of theory. By combining these models with uncertainty quantification and multi-level modeling, we introduce a multi-pronged strategy that accelerates data acquisition by at least a factor of three while achieving coupled cluster accuracy (i.e., to within 1 kcal mol-1 MAE) for robust VHTS.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Daniel B K Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
25
|
Via-Nadal M, Rodríguez Mayorga MA, Ramos Cordoba E, Matito E. Natural Range Separation of the Coulomb Hole. J Chem Phys 2022; 156:184106. [DOI: 10.1063/5.0085284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A natural range separation of the Coulomb hole into two components, one of them being predominant at long interelectronic separations (hcI ) and the other at short distances (hcII ), is exhaustively analyzed throughout various examples that put forward the most relevant features of this approach and how they can be used to develop efficient ways to capture electron correlation. We show that hcI, which only depends on the first-order reduced density matrix, can be used to identify molecules with a predominant nondynamic correlation regime and differentiate between two types of nondynamic correlation, types A and B. Through the asymptotic properties of the hole components, we explain how hcI can retrieve the long-range part of electron correlation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into spin components. We also analyze the simplest molecule presenting a dispersion interaction and how hcII helps identify it. The study of several atoms in different spin states reveals that the Coulomb hole components distinguish correlation regimes that are not apparent from the entire hole. The results of this work hold out the promise to aid in developing new electronic structure methods that efficiently capture electron correlation.
Collapse
Affiliation(s)
| | | | - Eloy Ramos Cordoba
- Theoretical Chemistry Group, Donostia International Physics Center, Spain
| | - Eduard Matito
- Donostia International Physics Center, Donostia International Physics Center, Spain
| |
Collapse
|
26
|
Analyzing cases of significant nondynamic correlation with DFT using the atomic populations of effectively localized electrons. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Elayan IA, Gupta R, Hollett JW. ΔNO and the complexities of electron correlation in simple hydrogen clusters. J Chem Phys 2022; 156:094102. [DOI: 10.1063/5.0073227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Semidalas E, Martin JM. The MOBH35 Metal–Organic Barrier Heights Reconsidered: Performance of Local-Orbital Coupled Cluster Approaches in Different Static Correlation Regimes. J Chem Theory Comput 2022; 18:883-898. [PMID: 35045709 PMCID: PMC8830049 DOI: 10.1021/acs.jctc.1c01126] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We have revisited
the MOBH35 (Metal–Organic Barrier Heights,
35 reactions) benchmark [Iron, Janes, , 2019, 123 ( (17), ), 3761−378130973722; ibid. 2019, 123, 6379–6380] for realistic organometallic catalytic reactions, using both canonical
CCSD(T) and localized orbital approximations to it. For low levels
of static correlation, all of DLPNO-CCSD(T), PNO-LCCSD(T), and LNO-CCSD(T)
perform well; for moderately strong levels of static correlation,
DLPNO-CCSD(T) and (T1) may break down catastrophically,
and PNO-LCCSD(T) is vulnerable as well. In contrast, LNO-CCSD(T) converges
smoothly to the canonical CCSD(T) answer with increasingly tight convergence
settings. The only two reactions for which our revised MOBH35 reference
values differ substantially from the original ones are reaction 9
and to a lesser extent 8, both involving iron. For the purpose of
evaluating density functional theory (DFT) methods for MOBH35, it
would be best to remove reaction 9 entirely as its severe level of
static correlation makes it just too demanding for a test. The magnitude
of the difference between DLPNO-CCSD(T) and DLPNO-CCSD(T1) is a reasonably good predictor for errors in DLPNO-CCSD(T1) compared to canonical CCSD(T); otherwise, monitoring all of T1, D1, max|tiA|, and 1/(εLUMO – εHOMO) should provide adequate warning
for potential problems. Our conclusions are not specific to the def2-SVP
basis set but are largely conserved for the larger def2-TZVPP, as
they are for the smaller def2-SV(P): the latter may be an economical
choice for calibrating against canonical CCSD(T). Finally, diagnostics
for static correlation are statistically clustered into groups corresponding
to (1) importance of single excitations in the wavefunction; (2a)
the small band gap, weakly separated from (2b) correlation entropy;
and (3) thermochemical importance of correlation energy, as well as
the slope of the DFT reaction energy with respect to the percentage
of HF exchange. Finally, a variable reduction analysis reveals that
much information on the multireference character is provided by T1, IND/Itot, and the exchange-based diagnostic A100[TPSS].
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot 7610001, Israel
| | - Jan M.L. Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot 7610001, Israel
| |
Collapse
|
29
|
Wang S, Li R, Wu Y, Zhao S. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Affiliation(s)
- Jan M. L. Martin
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 7610001 Reḥovot Israel
| |
Collapse
|
31
|
Extraction of a One-Particle Reduced Density Matrix from a Quantum Monte Carlo Electronic Density: A New Tool for Studying Nondynamic Correlation. COMPUTATION 2021. [DOI: 10.3390/computation9120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we present a method to build a first order reduced density matrix (1-RDM) of a molecule from variational Quantum Monte Carlo (VMC) computations by means of a given correlated mapping wave function. Such a wave function is modeled on a Generalized Valence Bond plus Complete Active Space Configuration Interaction form and fits at best the density resulting from the Slater-Jastrow wave function of VMC. The accuracy of the method proposed has been proved by comparing the resulting kinetic energy with the corresponding VMC value. This 1-RDM is used to analyze the amount of correlation eventually captured in Kohn-Sham calculations performed in an unrestricted approach (UKS-DFT) and with different energy functionals. We performed test calculations on a selected set of molecules that show a significant multireference character. In this analysis, we compared both local and global indicators of nondynamic and dynamic correlation. Moreover, following the natural orbital decomposition of the 1-RDM, we also compared the effective temperatures of the corresponding Fermi-like distributions. Although there is a general agreement between UKS-DFT and VMC, we found the best match with the functional LC-BLYP.
Collapse
|
32
|
Tzeli D, Raugei S, Xantheas SS. Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH 3) 4] q, q = -2, -1, +2, +3. J Chem Theory Comput 2021; 17:6080-6091. [PMID: 34546757 DOI: 10.1021/acs.jctc.1c00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur clusters play important roles in biology as parts of electron-transfer chains and catalytic cofactors. Here, we report a detailed computational analysis of a structural model of the simplest natural iron-sulfur cluster of rubredoxin and its cationic counterparts. Specifically, we investigated adiabatic reduction energies, dissociation energies, and bonding properties of the low-lying electronic states of the complexes [Fe(SCH3)4]2-/1-/2+/3+ using multireference (CASSCF, MRCISD), and coupled cluster [CCSD(T)] methodologies. We show that the nature of the Fe-S chemical bond and the magnitude of the ionization potentials in the anionic and cationic [Fe(SCH3)4] complexes offer a physical rationale for the relative stabilization, structure, and speciation of these complexes. Anionic and cationic complexes present different types of chemical bonds: prevalently ionic in [Fe(SCH3)4]2-/1- complexes and covalent in [Fe(SCH3)4]2+/3+ complexes. The ionic bonds result in an energy gain for the transition [Fe(SCH3)4]2- → [Fe(SCH3)4]- (i.e., FeII → FeIII) of 1.5 eV, while the covalent bonds result in an energy loss for the transition [Fe(SCH3)4]2+ → [Fe(SCH3)4]3+ of 16.6 eV, almost half of the ionization potential of Fe2+. The ionic versus covalent bond character influences the Fe-S bond strength and length, that is, ionic Fe-S bonds are longer than covalent ones by about 0.2 Å (for FeII) and 0.04 Å (for FeII). Finally, the average Fe-S heterolytic bond strength is 6.7 eV (FeII) and 14.6 eV (FeIII) at the RCCSD(T) level of theory.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 84, Greece.,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35, Greece
| | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
33
|
Naim C, Castet F, Matito E. Impact of van der Waals interactions on the structural and nonlinear optical properties of azobenzene switches. Phys Chem Chem Phys 2021; 23:21227-21239. [PMID: 34542144 DOI: 10.1039/d1cp02500g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The geometrical structures, relative Z-E energies, and second-order nonlinear responses of a collection of azobenzene molecules symmetrically substituted in the meta-position with functional groups of different bulkiness are investigated using various ab initio and density functional approximations. We show that RI-MP2 and RI-CC2 approximations provide very similar geometries and relative energies and evidence that London dispersion interactions existing between bulky meta-substituents stabilize the Z conformer. The ωB97X-D exchange-correlation functional provides an accurate description of these effects and gives a good account of the nonlinear optical response of the molecules. We show that density functional approximations should include no less than 50% of Hartree-Fock exchange to provide accurate hyperpolarizabilities. A property-structure analysis of the azobenzene derivatives reveals that the main contribution to the first hyperpolarizability comes from the azo bond, but phenyl meso-substituents can enhance it.
Collapse
Affiliation(s)
- Carmelo Naim
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Institut des Sciences Moléculaires (ISM, UMR CNRS 5255), University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France.
| | - Frédéric Castet
- Institut des Sciences Moléculaires (ISM, UMR CNRS 5255), University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France.
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain.
| |
Collapse
|
34
|
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem Rev 2021; 121:9927-10000. [PMID: 34260198 DOI: 10.1021/acs.chemrev.1c00347] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Sitkiewicz SP, Ramos-Cordoba E, Luis JM, Matito E. How Many Electrons Does a Molecular Electride Hold? J Phys Chem A 2021; 125:4819-4835. [PMID: 34038110 DOI: 10.1021/acs.jpca.1c02760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrides are very peculiar ionic compounds where electrons occupy the anionic positions. In a crystal lattice, these isolated electrons often form channels or surfaces, furnishing electrides with many traits with promising technological applications. Despite their huge potential, thus far, only a few stable electrides have been produced because of the intricate synthesis they entail. Due to the difficulty in assessing the presence of isolated electrons, the characterization of electrides also poses some serious challenges. In fact, their properties are expected to depend on the arrangement of these electrons in the molecule. Among the criteria that we can use to characterize electrides, the presence of a non-nuclear attractor (NNA) of the electron density is both the rarest and the most salient feature. Therefore, a correct description of the NNA is crucial to determine the properties of electrides. In this paper, we analyze the NNA and the surrounding region of nine molecular electrides to determine the number of isolated electrons held in the electride. We have seen that the correct description of a molecular electride hinges on the electronic structure method employed for the analyses. In particular, one should employ a basis set with sufficient flexibility to describe the region close to the NNA and a density functional approximation that does not suffer from large delocalization errors. Finally, we have classified these nine molecular electrides according to the most likely number of electrons that we can find in the NNA. We believe this classification highlights the strength of the electride character and will prove useful in designing new electrides.
Collapse
Affiliation(s)
- Sebastian P Sitkiewicz
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Eloy Ramos-Cordoba
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
36
|
Shee J, Loipersberger M, Hait D, Lee J, Head-Gordon M. Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. J Chem Phys 2021; 154:194109. [PMID: 34240907 DOI: 10.1063/5.0047386] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we provide a nuanced view of electron correlation in the context of transition metal complexes, reconciling computational characterization via spin and spatial symmetry breaking in single-reference methods with qualitative concepts from ligand-field and molecular orbital theories. These insights provide the tools to reliably diagnose the multi-reference character, and our analysis reveals that while strong (i.e., static) correlation can be found in linear molecules (e.g., diatomics) and weakly bound and antiferromagnetically coupled (monometal-noninnocent ligand or multi-metal) complexes, it is rarely found in the ground-states of mono-transition-metal complexes. This leads to a picture of static correlation that is no more complex for transition metals than it is, e.g., for organic biradicaloids. In contrast, the ability of organometallic species to form more complex interactions, involving both ligand-to-metal σ-donation and metal-to-ligand π-backdonation, places a larger burden on a theory's treatment of dynamic correlation. We hypothesize that chemical bonds in which inter-electron pair correlation is non-negligible cannot be adequately described by theories using MP2 correlation energies and indeed find large errors vs experiment for carbonyl-dissociation energies from double-hybrid density functionals. A theory's description of dynamic correlation (and to a less important extent, delocalization error), which affects relative spin-state energetics and thus spin symmetry breaking, is found to govern the efficacy of its use to diagnose static correlation.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthias Loipersberger
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Duan C, Liu F, Nandy A, Kulik HJ. Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery. J Phys Chem Lett 2021; 12:4628-4637. [PMID: 33973793 DOI: 10.1021/acs.jpclett.1c00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accelerated discovery with machine learning (ML) has begun to provide the advances in efficiency needed to overcome the combinatorial challenge of computational materials design. Nevertheless, ML-accelerated discovery both inherits the biases of training data derived from density functional theory (DFT) and leads to many attempted calculations that are doomed to fail. Many compelling functional materials and catalytic processes involve strained chemical bonds, open-shell radicals and diradicals, or metal-organic bonds to open-shell transition-metal centers. Although promising targets, these materials present unique challenges for electronic structure methods and combinatorial challenges for their discovery. In this Perspective, we describe the advances needed in accuracy, efficiency, and approach beyond what is typical in conventional DFT-based ML workflows. These challenges have begun to be addressed through ML models trained to predict the results of multiple methods or the differences between them, enabling quantitative sensitivity analysis. For DFT to be trusted for a given data point in a high-throughput screen, it must pass a series of tests. ML models that predict the likelihood of calculation success and detect the presence of strong correlation will enable rapid diagnoses and adaptation strategies. These "decision engines" represent the first steps toward autonomous workflows that avoid the need for expert determination of the robustness of DFT-based materials discoveries.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Šulka M, Dubecký M. Fragmentation of natural orbital occupation numbers-based diagnostic of differential multireference character in complexes with hydrogen bonds. J Comput Chem 2021; 42:475-483. [PMID: 33321553 DOI: 10.1002/jcc.26470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/06/2022]
Abstract
We explore the possible route to approximate natural orbital occupation numbers-based diagnostic of differential multireference character of noncovalent energy differences by techniques based on many-body expansion. It turns out that two-body fragmentation of monomers may lead to a reasonable approximation of such a diagnostic in hydrogen-bonded complexes. The results are useful, for example, for assessment of the expected bias cancellation in energy differences of larger systems obtained by single-reference methods.
Collapse
Affiliation(s)
- Martin Šulka
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Trnava, Slovakia.,Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matúš Dubecký
- Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Trnava, Slovakia.,Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
39
|
Zheng P, Ji C, Ying F, Su P, Wu W. A Valence-Bond-Based Multiconfigurational Density Functional Theory: The λ-DFVB Method Revisited. Molecules 2021; 26:521. [PMID: 33498268 PMCID: PMC7863953 DOI: 10.3390/molecules26030521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
A recently developed valence-bond-based multireference density functional theory, named λ-DFVB, is revisited in this paper. λ-DFVB remedies the double-counting error of electron correlation by decomposing the electron-electron interactions into the wave function term and density functional term with a variable parameter λ. The λ value is defined as a function of the free valence index in our previous scheme, denoted as λ-DFVB(K) in this paper. Here we revisit the λ-DFVB method and present a new scheme based on natural orbital occupation numbers (NOONs) for parameter λ, named λ-DFVB(IS), to simplify the process of λ-DFVB calculation. In λ-DFVB(IS), the parameter λ is defined as a function of NOONs, which are straightforwardly determined from the many-electron wave function of the molecule. Furthermore, λ-DFVB(IS) does not involve further self-consistent field calculation after performing the valence bond self-consistent field (VBSCF) calculation, and thus, the computational effort in λ-DFVB(IS) is approximately the same as the VBSCF method, greatly reduced from λ-DFVB(K). The performance of λ-DFVB(IS) was investigated on a broader range of molecular properties, including equilibrium bond lengths and dissociation energies, atomization energies, atomic excitation energies, and chemical reaction barriers. The computational results show that λ-DFVB(IS) is more robust without losing accuracy and comparable in accuracy to high-level multireference wave function methods, such as CASPT2.
Collapse
Affiliation(s)
| | | | | | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.Z.); (C.J.); (F.Y.)
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.Z.); (C.J.); (F.Y.)
| |
Collapse
|
40
|
Han R, Rodríguez-Mayorga M, Luber S. A Machine Learning Approach for MP2 Correlation Energies and Its Application to Organic Compounds. J Chem Theory Comput 2021; 17:777-790. [DOI: 10.1021/acs.jctc.0c00898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruocheng Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sandra Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Zhang D, Truhlar DG. Multiconfigurational Effects on the Density Coherence. J Chem Theory Comput 2020; 16:6915-6925. [PMID: 33085475 DOI: 10.1021/acs.jctc.0c00903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper is a study of density coherences in multiconfiguration self-consistent field theory and Kohn-Sham (KS) density functional theory. We visualize and compare the nondiagonal elements of the first-order reduced density matrix in the electronic coordinate representation. This is the electronic density coherence, and it also appears in Hartree-Fock (HF) theory in the integrand of the exchange integral. The density coherence is calculated as a function of the internuclear distance for three diatomic molecules (H2, F2, and HF) using both restricted and unrestricted KS and HF theory, as well as the complete active space self-consistent field method. We identify a group of closely associated peaks corresponding to the coherence of electrons on opposite sides of the center of the molecule, and we call this the exchange massif. We find that Slater-determinant methods with a higher percentage of HF exchange tend to underestimate the density coherence at the exchange massif. We explain the trends in terms of a multireference diagnostic and the number of unpaired electrons.
Collapse
Affiliation(s)
- Dayou Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
42
|
Alipour M, Khorrami M. Pauli energy and information-theoretic approach for evaluating dynamic and nondynamic electron correlation. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02689-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Liu F, Duan C, Kulik HJ. Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening. J Phys Chem Lett 2020; 11:8067-8076. [PMID: 32864977 DOI: 10.1021/acs.jpclett.0c02288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite its widespread use in chemical discovery, approximate density functional theory (DFT) is poorly suited to many targets, such as those containing open-shell, 3d transition metals that can be expected to have strong multireference (MR) character. For discovery workflows to be predictive, we need automated, low-cost methods that can distinguish the regions of chemical space where DFT should be applied from those where it should not. We curate more than 4800 open-shell transition-metal complexes up to hundreds of atoms in size from prior high-throughput DFT studies and evaluate affordable, finite-temperature DFT fractional occupation number (FON)-based MR diagnostics. We show that intuitive measures of strong correlation (i.e., the HOMO-LUMO gap) are not predictive of MR character as judged by FON-based diagnostics. Analysis of independently trained machine learning (ML) models to predict HOMO-LUMO gaps and FON-based diagnostics reveals differences in the metal and ligand sensitivity of the two quantities. We use our trained ML models to rapidly evaluate MR character over a space of ∼187000 theoretical complexes, identifying large-scale trends in spin-state-dependent MR character and finding small HOMO-LUMO gap complexes while ensuring low MR character.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Duan C, Liu F, Nandy A, Kulik HJ. Semi-supervised Machine Learning Enables the Robust Detection of Multireference Character at Low Cost. J Phys Chem Lett 2020; 11:6640-6648. [PMID: 32692570 DOI: 10.1021/acs.jpclett.0c02018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multireference (MR) diagnostics are common tools for identifying strongly correlated electronic structure that makes single-reference (SR) methods (e.g., density functional theory or DFT) insufficient for accurate property prediction. However, MR diagnostics typically require computationally demanding correlated wave function theory (WFT) calculations, and diagnostics often disagree or fail to predict MR effects on properties. To overcome these challenges, we introduce a semi-supervised machine learning (ML) approach with virtual adversarial training (VAT) of an MR classifier using 15 WFT and DFT MR diagnostics as inputs. In semi-supervised learning, only the most extreme SR or MR points are labeled, and the remaining point labels are learned. The resulting VAT model outperforms the alternatives, as quantified by the distinct property distributions of SR- and MR-classified molecules. To reduce the cost of generating inputs to the VAT model, we leverage the VAT model's robustness to noisy inputs by replacing WFT MR diagnostics with regression predictions in an MR decision engine workflow that preserves excellent performance. We demonstrate the transferability of our approach to larger molecules and those with distinct chemical composition from the training set. This MR decision engine demonstrates promise as a low-cost, high-accuracy approach to the automatic detection of strong correlation for predictive high-throughput screening.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Duan C, Liu F, Nandy A, Kulik HJ. Data-Driven Approaches Can Overcome the Cost-Accuracy Trade-Off in Multireference Diagnostics. J Chem Theory Comput 2020; 16:4373-4387. [PMID: 32536161 DOI: 10.1021/acs.jctc.0c00358] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-throughput computational screening typically employs methods (i.e., density functional theory or DFT) that can fail to describe challenging molecules, such as those with strongly correlated electronic structure. In such cases, multireference (MR) correlated wavefunction theory (WFT) would be the appropriate choice but remains more challenging to carry out and automate than single-reference (SR) WFT or DFT. Numerous diagnostics have been proposed for identifying when MR character is likely to have an effect on the predictive power of SR calculations, but conflicting conclusions about diagnostic performance have been reached on small data sets. We compute 15 MR diagnostics, ranging from affordable DFT-based to more costly MR-WFT-based diagnostics, on a set of 3165 equilibrium and distorted small organic molecules containing up to six heavy atoms. Conflicting MR character assignments and low pairwise linear correlations among diagnostics are also observed over this set. We evaluate the ability of existing diagnostics to predict the percent recovery of the correlation energy, %Ecorr. None of the DFT-based diagnostics are nearly as predictive of %Ecorr as the best WFT-based diagnostics. To overcome the limitation of this cost-accuracy trade-off, we develop machine learning (ML, i.e., kernel ridge regression) models to predict WFT-based diagnostics from a combination of DFT-based diagnostics and a new, size-independent 3D geometric representation. The ML-predicted diagnostics correlate as well with MR effects as their computed (i.e., with WFT) values, significantly improving over the DFT-based diagnostics on which the models were trained. These ML models thus provide a promising approach to improve upon DFT-based diagnostic accuracy while remaining suitably low cost for high-throughput screening.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Sylvetsky N, Banerjee A, Alonso M, Martin JML. Performance of Localized Coupled Cluster Methods in a Moderately Strong Correlation Regime: Hückel-Möbius Interconversions in Expanded Porphyrins. J Chem Theory Comput 2020; 16:3641-3653. [PMID: 32338891 PMCID: PMC7304861 DOI: 10.1021/acs.jctc.0c00297] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Localized
orbital coupled cluster theory has recently emerged as
a nonempirical alternative to DFT for large systems. Intuitively,
one might expect such methods to perform less well for highly delocalized
systems. In the present work, we apply both canonical CCSD(T) approximations
and a variety of localized approximations to a set of flexible expanded
porphyrins—macrocycles that can switch between Hückel,
figure-eight, and Möbius topologies under external stimuli.
Both minima and isomerization transition states are considered. We
find that Möbius(-like) structures have much stronger static
correlation character than the remaining structures, and that this
causes significant errors in DLPNO-CCSD(T) and even DLPNO-CCSD(T1) approaches, unless TightPNO cutoffs are employed. If sub-kcal
mol–1 accuracy with respect to canonical relative
energies is required even for Möbius-type systems (or other
systems plagued by strong static correlation), then Nagy and Kallay’s
LNO-CCSD(T) method with “tight” settings is the suitable
localized approach. We propose the present POLYPYR21 data set as a
benchmark for localized orbital methods or, more broadly, for the
ability of lower-level methods to handle energetics with strongly
varying degrees of static correlation.
Collapse
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Ambar Banerjee
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
47
|
Woller T, Banerjee A, Sylvetsky N, Santra G, Deraet X, De Proft F, Martin JML, Alonso M. Performance of Electronic Structure Methods for the Description of Hückel-Möbius Interconversions in Extended π-Systems. J Phys Chem A 2020; 124:2380-2397. [PMID: 32093467 PMCID: PMC7307915 DOI: 10.1021/acs.jpca.9b10880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. DFT remains the workhorse for modeling such extended macrocycles, when taking into account their size and huge conformational flexibility. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, π···π stacking, steric effects, ring strain, and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wave function methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a stronger degree of static correlation than the Hückel and twisted-Hückel structures, and as a result the relative energies of singly twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between the extrapolated MP2/CBS energies estimated from cc-pV{T,Q}Z, diffuse-augmented heavy-aug-cc-pV{T,Q}Z and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol-1 with the CCSD(T) relative energies. Regarding DFT methods, the range-separated double hybrids, such as ωB97M(2) and B2GP-PLYP, outperform other functionals with RMSDs of 0.6 and 0.8 kcal mol-1, respectively. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended π-systems, the errors drop down to 1.9 kcal mol-1 for the revised revDOD-PBEP86-NL, which eliminates the same-spin correlation energy. Minnesota meta-GGA functionals with high fractions of exact exchange (M06-2X and M08-HX) also perform reasonably well, outperforming more robust and significantly less empirically parametrized functionals like SCAN0-D3.
Collapse
Affiliation(s)
- Tatiana Woller
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Laboratoire
de Chimie Théorique (LCT), Sorbonne
Université, CNRS, F-75005 Paris, France
| | - Ambar Banerjee
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Nitai Sylvetsky
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Golokesh Santra
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Xavier Deraet
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank De Proft
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan M. L. Martin
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Mercedes Alonso
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
48
|
Hollett JW, Loos PF. Capturing static and dynamic correlation with ΔNO-MP2 and ΔNO-CCSD. J Chem Phys 2020; 152:014101. [PMID: 31914756 DOI: 10.1063/1.5140669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ΔNO method for static correlation is combined with second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster singles and doubles (CCSD) to account for dynamic correlation. The MP2 and CCSD expressions are adapted from finite-temperature CCSD, which includes orbital occupancies and vacancies, and expanded orbital summations. Correlation is partitioned with the aid of damping factors incorporated into the MP2 and CCSD residual equations. Potential energy curves for a selection of diatomics are in good agreement with extrapolated full configuration interaction results and on par with conventional multireference approaches.
Collapse
Affiliation(s)
- Joshua W Hollett
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba R3B 2G3, Canada
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Kimber P, Plasser F. Toward an understanding of electronic excitation energies beyond the molecular orbital picture. Phys Chem Chem Phys 2020; 22:6058-6080. [DOI: 10.1039/d0cp00369g] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Can we gain an intuitive understanding of excitation energies beyond the molecular picture?
Collapse
Affiliation(s)
- Patrick Kimber
- Department of Chemistry
- Loughborough University
- Loughborough
- UK
| | - Felix Plasser
- Department of Chemistry
- Loughborough University
- Loughborough
- UK
| |
Collapse
|
50
|
|