1
|
Gupta S, Cummings CN, Walker NR, Arunan E. Microwave spectroscopic and computational analyses of the phenylacetylene⋯methanol complex: insights into intermolecular interactions. Phys Chem Chem Phys 2024; 26:19795-19811. [PMID: 38985163 DOI: 10.1039/d4cp01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The microwave spectra of five isotopologues of phenylacetylene⋯methanol complex, C6H5CCH⋯CH3OH, C6H5CCH⋯CH3OD, C6H5CCH⋯CD3OD, C6H5CCD⋯CH3OH and C6H5CCH⋯13CH3OH, have been observed through Fourier transform microwave spectroscopy. Rotational spectra unambiguously unveil a specific structural arrangement characterised by dual interactions between the phenylacetylene and methanol. CH3OH serves as a hydrogen bond donor to the acetylenic π-cloud while concurrently accepting a hydrogen bond from the ortho C-H group of the PhAc moiety. The fitted rotational constants align closely with the structural configuration computed at the B3LYP-D3/aug-cc-pVDZ level of theory. The transitions of all isotopologues exhibit doublets owing to the methyl group's internal rotation within the methanol molecule. Comprehensive computational analyses, including natural bond orbital (NBO) analysis, atoms in molecules (AIM) theory, and non-covalent interactions (NCI) index plots, reveal the coexistence of both O-H⋯π and C-H⋯O hydrogen bonds within the complex. Symmetry adapted perturbation theory with density functional theory (SAPT-DFT) calculations performed on the experimentally determined geometry provide an insight into the prominent role of electrostatic interactions in stabilising the overall structural arrangement.
Collapse
Affiliation(s)
- Surabhi Gupta
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Charlotte N Cummings
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Nicholas R Walker
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Mata RA, Zhanabekova T, Obenchain DA, Suhm MA. Dispersion Control over Molecule Cohesion: Exploiting and Dissecting the Tipping Power of Aromatic Rings. Acc Chem Res 2024; 57:1077-1086. [PMID: 38537179 PMCID: PMC11025128 DOI: 10.1021/acs.accounts.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
ConspectusWe have learned over the past years how London dispersion forces can be effectively used to influence or even qualitatively tip the structure of aggregates and the conformation of single molecules. This happens despite the fact that single dispersion contacts are much weaker than competing polar forces. It is a classical case of strength by numbers, with the importance of London dispersion forces scaling with the system size. Knowledge about the tipping points, however difficult to attain, is necessary for a rational design of intermolecular forces. One requires a careful assessment of the competing interactions, either by sensitive spectroscopic techniques for the study of the isolated molecules and aggregates or by theoretical approaches. Of particular interest are the systems close to the tipping point, when dispersion interactions barely outweigh or approach the strength of the other interactions. Such subtle cases are important milestones for a scale-up to realistic multi-interaction situations encountered in the fields of life and materials science. In searching for examples that provide ideal competing interactions in complexes and small clusters, aromatic systems can offer a diverse set of molecules with a variation of dispersion and electrostatic forces that control the dominant and peripheral interactions. Our combined spectroscopic and theoretical investigations provide valuable insights into the balance of intermolecular forces because they typically allow us to switch the aromatic substituent on and off. High-resolution rotational spectroscopy serves as a benchmark for molecular structures, as correct calculations should be based on correct geometries. When discussing the competition with other noncovalent interactions, obvious competitors are directional hydrogen bonds. As a second counterweight to aryl interactions, we will discuss aurophilic/metallophilic interactions, which also have a strong stabilization with a small number of atoms involved. Vibrational spectroscopy is most sensitive to interactions of light atoms, and the competition of OH hydrogen bonds with dispersion forces in a molecular aggregate can be judged well by the OH stretching frequency. Experiments in the gas phase are ideal for gauging the accuracy of quantum chemical predictions free of solvent forces. A tight collaboration utilizing these three methods allows experiment vs experiment vs theory benchmarking of the overall influence of dispersion in molecular structures and energetics.
Collapse
Affiliation(s)
- Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Tlektes Zhanabekova
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Daniel A. Obenchain
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Martin A. Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
4
|
Wagner P, Rominger F, Gross JH, Mastalerz M. Solvent-Controlled Quadruple Catenation of Giant Chiral [8+12] Salicylimine Cubes Driven by Weak Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202217251. [PMID: 36695113 DOI: 10.1002/anie.202217251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Carvalho JO, Oliveira Neto JG, Silva Filho JG, de Sousa FF, Freire PTC, Santos AO, Façanha Filho PF. Physicochemical properties calculated using DFT method and changes of 5-methyluridine hemihydrate crystals at high temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121594. [PMID: 35841856 DOI: 10.1016/j.saa.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
5-methyluridine hemihydrate (5 mU) single crystals were synthesized by the slow solvent evaporation method. The physicochemical properties, such as frontier molecular orbitals, global reactivity indices and vibrational were computationally studied through density functional theory (DFT). In addition, structural, vibrational, and thermal properties were obtained by powder X-ray diffraction (PXRD), Raman spectroscopy, thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). PXRD evaluated the structural behavior of 5 mU crystal in the temperature range of 300-460 K. The high-temperature PXRD results suggested that the crystal undergoes two dehydration processes, being a first occurring from the orthorhombic structure (P21212) to triclinic (P1), in which the water losses occurred around 380 K. A second dehydration triggers the change from the triclinic structure to monoclinic (P21) within the 420-435 K temperature range. Furthermore, after this temperature, the anhydrous 5 mU suffers a melting process near 460 K, which is remarkably characterized as an irreversible process. Raman spectroscopy was carried out to identify the vibrational modes linked to the water molecule and the noticeable changes in these bands due to high-temperature effects around 380 K and 410 K. Indeed, changes on Raman bands, such as intensity inversion, the disappearance of bands associated with the hydrogen bonds formed from the water molecules and uracil group, and the ribose group were observed. Finally, this study provided details on the structural and vibrational changes caused by the dehydration of 5 mU crystals and the importance of hydrogen bonds for understanding the intermolecular interactions of the 5 mU, a methylated nucleoside with important biological functions.
Collapse
Affiliation(s)
- Jhonatam O Carvalho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto Federal do Maranhão, Campus Açailândia, MA 65930-000, Brazil
| | - João G Oliveira Neto
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - José G Silva Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Paulo T C Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE 60455-760, Brazil
| | - Adenilson O Santos
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Pedro F Façanha Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
6
|
Tikhonov DS, Scutelnic V, Sharapa DI, Krotova AA, Dmitrieva AV, Obenchain DA, Schnell M. Structures of the (Imidazole)nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Struct Chem 2022. [DOI: 10.1007/s11224-022-02053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractHere, we present new cryogenic infrared spectra of the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H$$^+$$
+
ion, while in (Imidazole)$$_{2}\mathrm{H}^{+}$$
2
H
+
and (Imidazole)$$_{3}\mathrm{H}^{+}$$
3
H
+
the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions.
Collapse
|
7
|
Boden P, Strebert PH, Meta M, Dietrich F, Riehn C, Gerhards M. Chromone-methanol clusters in the electronic ground and lowest triplet state: a delicate interplay of non-covalent interactions. Phys Chem Chem Phys 2022; 24:15208-15216. [PMID: 35579075 DOI: 10.1039/d2cp01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromone offers two energetically almost equivalent docking sites for alcohol molecules, in which the hydroxyl group is hydrogen bonded to one of the free electron pairs of the carbonyl O atom. Here, the delicate balance between these two competing arrangements is studied by combining IR/R2PI and UV/IR/UV spectroscopy in a molecular beam supported by quantum-chemical calculations. Most interestingly, chromone undergoes an efficient intersystem crossing into the triplet manifold upon electronic excitation, so that the studies on aromatic molecule-solvent complexes are for the first time extended to such a cluster in a triplet state. As the lowest triplet state (T1) is of ground state character, powerful energy decomposition approaches such as symmetry-adapted perturbation theory (SAPT) and local energy decomposition using the domain-based local pair natural orbital coupled-cluster method (DLPNO-CCSD(T)/LED) are applied. From the theoretical analysis we infer for the T1 state a loss of planarity (puckering) of the 4-pyrone ring of the chromone unit, which considerably affects the interplay between different types of non-covalent interactions at the two possible binding sites.
Collapse
Affiliation(s)
- Pol Boden
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Patrick H Strebert
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Marcel Meta
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.,Núcleo Milenio MultiMat & Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile.
| | - Christoph Riehn
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Unravelling the non-covalent interactions in certain n-propyl amine – Ether systems through acoustic and DFT studies at 303.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Roy TK, Mani D, Schwaab G, Havenith M. A close competition between O–H⋯O and O–H⋯π hydrogen bonding: IR spectroscopy of anisole–methanol complex in helium nanodroplets. Phys Chem Chem Phys 2020; 22:22408-22416. [DOI: 10.1039/d0cp02589e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anisole forms O–H⋯O as well O–H⋯π bound complexes with methanol.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Devendra Mani
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| |
Collapse
|
10
|
Fatima M, Maué D, Pérez C, Tikhonov DS, Bernhard D, Stamm A, Medcraft C, Gerhards M, Schnell M. Structures and internal dynamics of diphenylether and its aggregates with water. Phys Chem Chem Phys 2020; 22:27966-27978. [DOI: 10.1039/d0cp04104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on a detailed multi-spectroscopic analysis of the structures and internal dynamics of diphenylether and its aggregates with up to three water molecules by employing molecular beam experiments.
Collapse
Affiliation(s)
- M. Fatima
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Maué
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Pérez
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. S. Tikhonov
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Bernhard
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - A. Stamm
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Medcraft
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. Gerhards
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - M. Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| |
Collapse
|
11
|
Wang L, Zhang S, Wang Y, Zhang B. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether. RSC Adv 2020; 10:18093-18098. [PMID: 35517230 PMCID: PMC9053750 DOI: 10.1039/d0ra02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces. The structural preference induced by dispersion interactions is demonstrated to influence the excited state dynamics of diphenyl ether (DPE) using femtosecond time-resolved transient absorption (TA) associated with quantum chemical calculations. The experimental results in aprotic solvents show that the S1 state is populated upon irradiation at 267 nm with excess vibrational energy dissipating to solvent molecules in several picoseconds, and then decays via internal conversion (IC) within 50 ps as well as intersystem crossing (ISC) and fluorescence with a lifetime of nanoseconds. The polarity of the solvent disturbs the excited state energies and enhances the energy barriers of the ISC channel. Furthermore, the intermolecular dispersion interactions with protic solvents result in the OH–π isomer dominating in methanol and the OH–O isomer is slightly preferred in t-butanol in the ground state. The hydrogen bonded isomer measurements show an additional change from OH–O to OH–π geometry in the first 1 ps besides the relaxation processes in aprotic solvents. The time constants measured in the TA spectra suggest that the OH–O isomer facilitates IC. The results show that the OH–π isomer has a more rigid structure and a higher barrier for IC, making it harder to reach the geometric conical intersection through conformer rearrangement. This work enables us to have a good knowledge of how the structural preference induced by dispersion interactions affects excited state dynamics of the heteroaromatic compounds. Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces.![]()
Collapse
Affiliation(s)
- Lian Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
12
|
Karir G, Lüttschwager NOB, Suhm MA. Phenylacetylene as a gas phase sliding balance for solvating alcohols. Phys Chem Chem Phys 2019; 21:7831-7840. [PMID: 30933202 DOI: 10.1039/c9cp00435a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phenylacetylene offers two similarly attractive π binding sites to OH containing solvent molecules, the phenyl ring and the acetylenic triple bond. By systematically varying the solvent molecule and by methylating aromatic or acetylenic CH groups, the docking preference can be controlled. It ranges from almost exclusive acetylene docking to predominant phenyl docking, depending on how electron density is deposited into the conjugated system and how large the London dispersion interaction is. FTIR spectroscopy of supersonic jet expansions is used to observe the competitive docking preferences in phenylacetylene and some of its methylated derivatives. A new data evaluation procedure that estimates band strength uncertainties based on a Monte Carlo approach is introduced. We test how well two density functionals (B3LYP-D3 and M06-2X) in combination with a def2-TZVP basis set are able to describe the docking switch. B3LYP-D3 is slightly biased towards acetylenic hydrogen bond docking and M06-2X is strongly biased towards phenyl hydrogen bond docking. More accurate theoretical predictions are invited and some previous experimental assignments are questioned.
Collapse
Affiliation(s)
- Ginny Karir
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
13
|
Bernhard D, Fatima M, Poblotzki A, Steber AL, Pérez C, Suhm MA, Schnell M, Gerhards M. Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water. Phys Chem Chem Phys 2019; 21:16032-16046. [DOI: 10.1039/c9cp02635e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The planarity and rigidity of dibenzofuran inverts the docking preference for increasingly bulky R-OH solvent molecules, compared to the closely related diphenyl ether. Now, London dispersion favors OH⋯π hydrogen bonding.
Collapse
Affiliation(s)
- D. Bernhard
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - M. Fatima
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - A. Poblotzki
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - A. L. Steber
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - C. Pérez
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - M. Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. Gerhards
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| |
Collapse
|
14
|
Bernhard D, Dietrich F, Fatima M, Pérez C, Gottschalk HC, Wuttke A, Mata RA, Suhm MA, Schnell M, Gerhards M. The phenyl vinyl ether-methanol complex: a model system for quantum chemistry benchmarking. Beilstein J Org Chem 2018; 14:1642-1654. [PMID: 30013690 PMCID: PMC6036964 DOI: 10.3762/bjoc.14.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/02/2018] [Indexed: 11/23/2022] Open
Abstract
The structure of the isolated aggregate of phenyl vinyl ether and methanol is studied by combining a multi-spectroscopic approach and quantum-chemical calculations in order to investigate the delicate interplay of noncovalent interactions. The complementary results of vibrational and rotational spectroscopy applied in molecular beam experiments reveal the preference of a hydrogen bond of the methanol towards the ether oxygen (OH∙∙∙O) over the π-docking motifs via the phenyl and vinyl moieties, with an additional less populated OH∙∙∙P(phenyl)-bound isomer detected only by microwave spectroscopy. The correct prediction of the energetic order of the isomers using quantum-chemical calculations turns out to be challenging and succeeds with a sophisticated local coupled cluster method. The latter also yields a quantification as well as a visualization of London dispersion, which prove to be valuable tools for understanding the role of dispersion on the docking preferences. Beyond the structural analysis of the electronic ground state (S0), the electronically excited (S1) state is analyzed, in which a destabilization of the OH∙∙∙O structure compared to the S0 state is observed experimentally and theoretically.
Collapse
Affiliation(s)
- Dominic Bernhard
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Mariyam Fatima
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Cristóbal Pérez
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Hannes C Gottschalk
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Axel Wuttke
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Martin A Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Melanie Schnell
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 1, D-24118 Kiel, Germany
| | - Markus Gerhards
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
15
|
Dietrich F, Bernhard D, Fatima M, Pérez C, Schnell M, Gerhards M. The Effect of Dispersion on the Structure of Diphenyl Ether Aggregates. Angew Chem Int Ed Engl 2018; 57:9534-9537. [DOI: 10.1002/anie.201801842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Dietrich
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| | - Dominic Bernhard
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
- Christian-Albrechts-Universität zu Kiel; Institut für Physikalische Chemie; Max-Eyth-Strasse 1 24118 Kiel Germany
| | - Markus Gerhards
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| |
Collapse
|
16
|
Dietrich F, Bernhard D, Fatima M, Pérez C, Schnell M, Gerhards M. Der Effekt von Dispersionswechselwirkungen auf die Struktur von Diphenylether-Aggregaten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabian Dietrich
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| | - Dominic Bernhard
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
- Christian-Albrechts-Universität zu Kiel; Institut für Physikalische Chemie; Max-Eyth-Straße 1 24118 Kiel Deutschland
| | - Markus Gerhards
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| |
Collapse
|
17
|
Banerjee P, Chakraborty T. Weak hydrogen bonds: insights from vibrational spectroscopic studies. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1419731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Pujarini Banerjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - Tapas Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
18
|
Gottschalk HC, Poblotzki A, Suhm MA, Al-Mogren MM, Antony J, Auer AA, Baptista L, Benoit DM, Bistoni G, Bohle F, Dahmani R, Firaha D, Grimme S, Hansen A, Harding ME, Hochlaf M, Holzer C, Jansen G, Klopper W, Kopp WA, Kröger LC, Leonhard K, Mouhib H, Neese F, Pereira MN, Ulusoy IS, Wuttke A, Mata RA. The furan microsolvation blind challenge for quantum chemical methods: First steps. J Chem Phys 2018; 148:014301. [DOI: 10.1063/1.5009011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hannes C. Gottschalk
- Institut für Physikalische Chemie, University of Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Anja Poblotzki
- Institut für Physikalische Chemie, University of Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Martin A. Suhm
- Institut für Physikalische Chemie, University of Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Muneerah M. Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Jens Antony
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Alexander A. Auer
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Leonardo Baptista
- Departamento de Química e Ambiental, Universidade do Estado do Rio de Janeiro, Faculdade de Tecnologia, Resende, RJ, Brazil
| | - David M. Benoit
- E. A. Milne Centre for Astrophysics and G. W. Gray Centre for Advanced Materials Chemistry, School of Mathematical and Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Giovanni Bistoni
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Rahma Dahmani
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Dzmitry Firaha
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, D-52062 Aachen, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Michael E. Harding
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Christof Holzer
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Georg Jansen
- Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstraße 5, D-45117 Essen, Germany
| | - Wim Klopper
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Wassja A. Kopp
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, D-52062 Aachen, Germany
| | - Leif C. Kröger
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, D-52062 Aachen, Germany
| | - Kai Leonhard
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, D-52062 Aachen, Germany
| | - Halima Mouhib
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Max N. Pereira
- Departamento de Química e Ambiental, Universidade do Estado do Rio de Janeiro, Faculdade de Tecnologia, Resende, RJ, Brazil
| | - Inga S. Ulusoy
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| | - Axel Wuttke
- Institut für Physikalische Chemie, University of Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institut für Physikalische Chemie, University of Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Bernhard D, Holzer C, Dietrich F, Stamm A, Klopper W, Gerhards M. The Structure of Diphenyl Ether-Methanol in the Electronically Excited and Ionic Ground States: A Combined IR/UV Spectroscopic and Theoretical Study. Chemphyschem 2017; 18:3634-3641. [PMID: 29024275 DOI: 10.1002/cphc.201700722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/24/2017] [Indexed: 11/06/2022]
Abstract
Diphenyl ether offers competing docking sites for methanol: the ether oxygen acts as a common hydrogen-bond acceptor and the π system of each phenyl ring allows for OH-π interactions driven by electrostatic, induction, and dispersion forces. Based on investigations in the electronic ground state (S0 ), we present a detailed study of the electronically excited state (S1 ) and the ionic ground state (D0 ), in which an impact on the structural preference is expected compared with the S0 state. Dispersion forces in the electronically excited state were analyzed by comparing the computed binding energies at the coupled-cluster-singles (CCS) and approximate coupled-cluster-singles-doubles levels of theory (CC2 approximation). By applying UV/IR/UV spectroscopy, we found a more strongly bound OH-π structure in the S1 state compared with the S0 state, in agreement with spin-component-scaled CC2 calculations. A structural rearrangement into a non-hydrogen-bonded structure takes places upon ionization in the D0 state, which was revealed by using IR photodissociation spectroscopy and confirmed by theory.
Collapse
Affiliation(s)
- Dominic Bernhard
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Christof Holzer
- Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie, KIT, Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
| | - Fabian Dietrich
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Anke Stamm
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie, KIT, Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
| | - Markus Gerhards
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| |
Collapse
|
20
|
Poblotzki A, Gottschalk HC, Suhm MA. Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances. J Phys Chem Lett 2017; 8:5656-5665. [PMID: 29094953 DOI: 10.1021/acs.jpclett.7b02337] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular energy balances are supramolecular complexes with a nearly degenerate bistable docking structure and low barriers in between, which can be tuned by chemical substitution to prefer one or the other site. The docking preference can be probed by forming the complexes in a supersonic jet expansion and by measuring their spectroscopic signature. Linear spectroscopies are shown to be well suited for this purpose, in particular when they are assisted by more sensitive techniques and by approximate computed photon interaction cross sections. Molecular analogues of conventional beam balances, seesaw balances, and torsional balances are discussed, all based on noncovalent interactions. The discrimination of energy differences down to the sub-kJ/mol level is demonstrated. The correspondence to intramolecular torsional balances in NMR spectroscopy is outlined. Besides highlighting conformational preferences, the results of intermolecular balance experiments can serve as critical benchmarks for an accurate description of intermolecular forces and zero-point vibrational energies.
Collapse
Affiliation(s)
- Anja Poblotzki
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstraße 6, 37077 Göttingen, Germany
| | - Hannes C Gottschalk
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstraße 6, 37077 Göttingen, Germany
| | - Martin A Suhm
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Cheng S, Tang S, Tsona NT, Du L. The Influence of the Position of the Double Bond and Ring Size on the Stability of Hydrogen Bonded Complexes. Sci Rep 2017; 7:11310. [PMID: 28900230 PMCID: PMC5596019 DOI: 10.1038/s41598-017-11921-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
To study the influence of the position of the double bond and ring size on the stability of hydrogen bonded complexes, the 1:1 complexes formed between 2,2,2-trifluoroethanol (TFE) and three heterocyclic compounds including 2,3-dihydrofuran (2,3-DHF), 2,5-dihydrofuran (2,5-DHF) and 3,4-dihydropyran (3,4-DHP) were investigated systematically. The formation of hydrogen bonded TFE−2,3-DHF, TFE−2,5-DHF and TFE−3,4-DHP complexes were identified by gas phase FTIR spectroscopy at room temperature, and the OH-stretching fundamental transition of TFE was red shifted upon complexation. The competition between the O atom and π-electrons bonding sites within the complexes was studied, and the O−H···π type hydrogen bond was found to be less stable than the O−H···O in all three cases. The observed red shifts of the OH-stretching fundamental transitions in the complexes were attributed to the formation of O−H···O hydrogen bond. Equilibrium constants of the complexation reactions were determined from measured and calculated OH-stretching fundamental intensities. Both theoretical calculations and experimental results reveal that the hydrogen bond strengths in the complexes follow the sequence: TFE−2,5-DHF > TFE−2,3-DHF ≈ TFE−3,4-DHP, thus the position of the double bond exerts significantly larger influence than ring size on the stability of the selected hydrogen bonded complexes.
Collapse
Affiliation(s)
- Shumin Cheng
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China
| | - Shanshan Tang
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China
| | - Lin Du
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China.
| |
Collapse
|
22
|
Bernhard D, Dietrich F, Fatima M, Perez C, Poblotzki A, Jansen G, Suhm MA, Schnell M, Gerhards M. Multi-spectroscopic and theoretical analyses on the diphenyl ether–tert-butyl alcohol complex in the electronic ground and electronically excited state. Phys Chem Chem Phys 2017; 19:18076-18088. [DOI: 10.1039/c7cp02967e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-spectroscopic and theoretical investigations on the isolated diphenyl ether–tert-butyl alcohol complex – an ideal benchmark system for theory with strongly competing OH–O and OH–π binding motifs.
Collapse
Affiliation(s)
- Dominic Bernhard
- TU Kaiserslautern, Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - Fabian Dietrich
- TU Kaiserslautern, Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - Mariyam Fatima
- Max-Planck-Institut für Struktur und Dynamik der Materie
- D-22761 Hamburg
- Germany
| | - Cristobal Perez
- Max-Planck-Institut für Struktur und Dynamik der Materie
- D-22761 Hamburg
- Germany
| | - Anja Poblotzki
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - Georg Jansen
- Fakultät für Chemie
- Universität Duisburg-Essen
- D-45117 Essen
- Germany
| | - Martin A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - Melanie Schnell
- Max-Planck-Institut für Struktur und Dynamik der Materie
- D-22761 Hamburg
- Germany
| | - Markus Gerhards
- TU Kaiserslautern, Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| |
Collapse
|