1
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Raczyński P, Górny K, Bełdowski P, Marciniak B, Pöschel T, Dendzik Z. Influence of silicon nanocone on cell membrane self-sealing capabilities for targeted drug delivery-Computer simulation study. Arch Biochem Biophys 2023; 749:109802. [PMID: 37913856 DOI: 10.1016/j.abb.2023.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Efficient and non-invasive techniques of cargo delivery to biological cells are the focus of biomedical research because of their great potential importance for targeted drug therapy. Therefore, much effort is being made to study the characteristics of using nano-based biocompatible materials as systems that can facilitate this task while ensuring appropriate self-sealing of the cell membrane. Here, we study the effects of indentation and withdrawal of nanocone on phospholipid membrane by applying steered molecular dynamics (SMD) technique. Our results show that the withdrawal process directly depends on the initial position of the nanocone. The average force and work are considerably more significant in case of the withdrawal starting from a larger depth. This result is attributed to stronger hydrophobic interactions between the nanocone and lipid tails of the membrane molecules. Furthermore, when the indenter was started from the lower initial depth, the number of lipids removed from the membrane was several times smaller than the deeper indentation. The choice of the least invasive method for nanostructure-assisted drug delivery is crucial for possible applications in medicine. Therefore, the results presented in this work might be helpful in efficient and safe drug delivery with nanomaterials.
Collapse
Affiliation(s)
- Przemysław Raczyński
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland.
| | - Krzysztof Górny
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland
| | - Piotr Bełdowski
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas Väg 51, Stockholm, SE-10044, Sweden; Institute of Mathematics and Physics, UTP University of Science and Technology, Bydgoszcz, 85-796, Poland
| | - Beata Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Bydgoszcz, 85-796, Poland
| | - Thorsten Pöschel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnber, IZNF Cauerstraße 3, Erlangen, 91058, Germany
| | - Zbigniew Dendzik
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland
| |
Collapse
|
3
|
Mishra RK, Mukherjee S, Bhattacharyya D. Maturation of siRNA by strand separation: Steered molecular dynamics study. J Biomol Struct Dyn 2022; 40:13682-13692. [PMID: 34726123 DOI: 10.1080/07391102.2021.1994468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA interference, particularly siRNA induced gene silencing is becoming an important avenue of modern therapeutics. The siRNA is delivered to the cells as short double helical RNA which becomes single stranded for forming the RISC complex. Significant experimental evidence is available for most of the steps except the process of the separation of the two strands. We have attempted to understand the pathway for double stranded siRNA (dsRNA) to single stranded (ssRNA) molecules using steered molecular dynamics simulations. As the process is completely unexplored we have applied force from all possible directions restraining all possible residues to convert dsRNA to ssRNA. We found pulling one strand along the helical axis direction restraining the far end of the other strand demands excessive force for ssRNA formation. Pulling a central residue of one strand, in a direction perpendicular to the helix axis, while keeping the base paired residue fixed requires intermediate force for strand separation. Moreover, we found that in this process the force requirement is quite high for the first bubble formation (nucleation energy) and the bubble propagation energies are quite small. We believe the success rate of the design of siRNA sequences for gene silencing may increase if this mechanistic knowledge is utilized for such a design process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanchita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
4
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
5
|
Raczyński P, Górny K, Bełdowski P, Yuvan S, Dendzik Z. Application of Graphene as a Nanoindenter Interacting with Phospholipid Membranes-Computer Simulation Study. J Phys Chem B 2020; 124:6592-6602. [PMID: 32633958 PMCID: PMC7460090 DOI: 10.1021/acs.jpcb.0c02319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Synthesis
of graphene (GN) in 2004 stimulated wide interest in
potential applications of 2D materials in catalysis, optoelectronics,
biotechnology, and construction of sensing devices. In the presented
study, interactions between GN sheets and phospholipid bilayers are
examined using steered molecular dynamics simulations. GN sheets of
different sizes were inserted into a bilayer and subsequently withdrawn
from it at two different rates (1 and 2 m/s). In some cases, nanoindentation
led to substantial damage of the phospholipid bilayer; however, an
effective self-sealing process occurred even after significant degradation.
The average force and work, deflection of the membrane during indentation,
withdrawal processes, and structural changes caused by moving sheets
are discussed. These quantities are utilized to estimate the suitability
of GN sheets for targeted drug delivery or other nanomedicine tools.
The results are compared with those obtained for other nanostructures
such as homogeneous and heterogeneous nanotubes.
Collapse
Affiliation(s)
- Przemysław Raczyński
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Piotr Bełdowski
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas Väg 51, SE-10044 Stockholm, Sweden.,Institute of Mathematics & Physics, UTP University of Science & Technology, 85-796 Bydgoszcz, Poland
| | - Steven Yuvan
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
6
|
Levintov L, Vashisth H. Ligand Recognition in Viral RNA Necessitates Rare Conformational Transitions. J Phys Chem Lett 2020; 11:5426-5432. [PMID: 32551654 DOI: 10.1021/acs.jpclett.0c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) are conformationally flexible molecules that fold into three-dimensional structures and play an important role in different cellular processes as well as in the development of many diseases. RNA has therefore become an important target for developing novel therapeutic approaches. The biophysical processes underlying RNA function are often associated with rare structural transitions that play a key role in ligand recognition. In this work, we probe these rarely occurring transitions using nonequilibrium simulations by characterizing the dissociation of a ligand molecule from an HIV-1 viral RNA element. Specifically, we observed base-flipping rare events that are coupled with ligand binding/unbinding and also provided mechanistic details underlying these transitions.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
7
|
Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: quantum chemical and steered molecular dynamics studies. J Comput Aided Mol Des 2018; 32:793-807. [DOI: 10.1007/s10822-018-0130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|