1
|
Dobson LS, Zhang Q, McKay BA, Oke O, Isanbor C, Khan MF, Piscelli BA, Cordes DB, Cormanich RA, Murphy CD, O’Hagan D. Aryl (β,β',β″-Trifluoro)- tert-butyl: A Candidate Motif for the Discovery of Bioactives. Org Lett 2023; 25:6802-6807. [PMID: 37682007 PMCID: PMC10521027 DOI: 10.1021/acs.orglett.3c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/09/2023]
Abstract
The (β,β',β″-trifluoro)-tert-butyl (TFTB) group has received very little attention in the literature. This work presents a direct synthesis of this group and explores its properties. The TFTB group arises when the methyl groups of a tert-butyl moiety are exchanged for fluoromethyl groups. Sequential fluoromethylations result in a decrease of Log P (increasing hydrophilicity), ultimately by 1.7 Log P units in the TFTB group relative to that of tert-butyl benzene itself. A focus is placed on synthetic transformations, conformational analysis, and metabolism of the TFTB group in the context of presenting a favorable profile as a motif for the discovery of bioactives.
Collapse
Affiliation(s)
- Luca S. Dobson
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Qingzhi Zhang
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Benjamin A. McKay
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Oluwayinka Oke
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
- Chemistry
Department, University of Lagos, Akoka, Lagos 101245, Nigeria
| | | | - Mohd Faheem Khan
- School
of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bruno A. Piscelli
- Chemistry
Institute, University of Campinas, Monteiro Lobato Street, Campinas, Sao Paulo 13083-862, Brazil
| | - David B. Cordes
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Rodrigo A. Cormanich
- Chemistry
Institute, University of Campinas, Monteiro Lobato Street, Campinas, Sao Paulo 13083-862, Brazil
| | - Cormac D. Murphy
- School
of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David O’Hagan
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
2
|
Ren P, Zhang T, Jain N, Ching HYV, Jaworski A, Barcaro G, Monti S, Silvestre-Albero J, Celorrio V, Chouhan L, Rokicińska A, Debroye E, Kuśtrowski P, Van Doorslaer S, Van Aert S, Bals S, Das S. An Atomically Dispersed Mn-Photocatalyst for Generating Hydrogen Peroxide from Seawater via the Water Oxidation Reaction (WOR). J Am Chem Soc 2023. [PMID: 37487055 DOI: 10.1021/jacs.3c03785] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 μM H2O2 in 7 h from alkaline water and up to 1800 μM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.
Collapse
Affiliation(s)
- Peng Ren
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Noopur Jain
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - H Y Vincent Ching
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, Pisa I-56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, Pisa I-56124, Italy
| | | | - Veronica Celorrio
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Lata Chouhan
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Anna Rokicińska
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Piotr Kuśtrowski
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | | | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
3
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
4
|
Ossadnik D, Kuzin S, Qi M, Yulikov M, Godt A. A Gd III-Based Spin Label at the Limits for Linewidth Reduction through Zero-Field Splitting Optimization. Inorg Chem 2023; 62:408-432. [PMID: 36525400 DOI: 10.1021/acs.inorgchem.2c03531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The remarkably narrow central line in the electron paramagnetic resonance spectrum and the very weak zero-field splitting (ZFS) make [GdIII(NO3Pic)] ([GdIII(TPATCN)]) an attractive starting point for the development of spin labels. For retaining the narrow line of this parent complex when modifying it with a substituent enabling bioconjugation, alkyl with a somehow remote functional group as a substituent at the picolinate moiety was found to be highly suitable because ZFS stayed weak, even if the threefold axial symmetry was broken. The ZFS is so weak that hyperfine coupling and/or g-value variations noticeably determine the linewidth in Q band and higher fields when the biomolecule is protonated, which is the standard situation, and in W band and higher fields for the protonated complex in a fully deuterated surrounding. Clearly, [NDSE-{GdIII(NO3Pic)}], a spin label targeting the cysteines in a peptide, is at a limit of linewidth narrowing through ZFS minimization. The labeling reaction is highly chemoselective and, applied to a polyproline with two cysteine units, it took no more than a minute at 7 °C and pH 7.8. Subsequent disulfide scrambling is very slow and can therefore be prevented. Double electron-electron resonance and relaxation-induced dipolar modulation enhancement applied to the spin-labeled polyproline proved the spin label useful for distance determination in peptides.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Sergei Kuzin
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|
5
|
Syryamina VN, Yulikov M, Nyström L. The Cu(ii) - dietary fibre interactions at molecular level unveiled via EPR spectroscopy. RSC Adv 2022; 12:19901-19916. [PMID: 35865208 PMCID: PMC9261904 DOI: 10.1039/d2ra01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
While dietary fibres have a reputation of a healthy food component, the interaction between nutrients and neutral fibers is non-covalent, and its characterization is challenging for most analytical techniques. Here, on the example of barley β-glucan (BBG) and paramagnetic Cu(ii) ions we demonstrate the performance of different Electron Paramagnetic Resonance (EPR) methods in the fibre studies. EPR techniques were tested on two spin probe systems with different affinity in the interaction with dietary fibres - Cu(OAc)2 salt, which weakly dissociates under physiological conditions and CuSO4 salt, which easily dissociates, so that in the latter case Cu(ii) can be considered as a 'free' ion, only chelated by water molecules. The Cu(ii)-BBG interaction was determined by pulse EPR relaxation measurements, but this interaction appears not strong enough for continuous wave EPR detection. The capability of the fibres for Cu(ii) absorption was successfully analyzed by comparison of the results from the pulse dipolar spectroscopy with numerical simulations. The local distribution of sugar hydrogen atoms around the Cu(ii) ion has been determined by electron spin echo envelope modulation (ESEEM) and electron-nuclei double resonance (ENDOR) techniques.
Collapse
Affiliation(s)
- Victoria N Syryamina
- ETH Zürich, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry Schmelzbergstrasse 9 8092 Zürich Switzerland
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Maxim Yulikov
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Laura Nyström
- ETH Zürich, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry Schmelzbergstrasse 9 8092 Zürich Switzerland
| |
Collapse
|
6
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
7
|
Zhang Q, Pavanello L, Potapov A, Bartlam M, Winkler GS. Structure of the human Ccr4-Not nuclease module using X-ray crystallography and electron paramagnetic resonance spectroscopy distance measurements. Protein Sci 2022; 31:758-764. [PMID: 34923703 PMCID: PMC8862426 DOI: 10.1002/pro.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.
Collapse
Affiliation(s)
- Qionglin Zhang
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Lorenzo Pavanello
- School of PharmacyUniversity of NottinghamNottinghamUK,Present address:
LifeArcStevenage Bioscience Catalyst Open Innovation CampusStevenageUK
| | - Alexey Potapov
- School of Physics and Astronomy, Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Mark Bartlam
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | | |
Collapse
|
8
|
Timofeev IO, Politanskaya LV, Tretyakov EV, Polienko YF, Tormyshev VM, Bagryanskaya E, Krumkacheva OA, Fedin MV. Fullerene-based triplet spin labels: methodology aspects for pulsed dipolar EPR spectroscopy. Phys Chem Chem Phys 2022; 24:4475-4484. [DOI: 10.1039/d1cp05545c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for Pulsed Dipolar Electron Paramagnetic Resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown...
Collapse
|
9
|
Kumbhakar S, Giri B, Muley A, Karumban KS, Maji S. Design, synthesis, structural, spectral, and redox properties and phenoxazinone synthase activity of tripodal pentacoordinate Mn(II) complexes with impressive turnover numbers. Dalton Trans 2021; 50:16601-16612. [PMID: 34747419 DOI: 10.1039/d1dt01925b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catechol oxidase (CO) and phenoxazinone synthase (PHS) are two enzymes of immense significance due to their capability to oxidize catechols and o-aminophenols to o-quinones and phenoxazinones, respectively. In this connection two mononuclear manganese complexes with the molecular framework [MnII(Ln)Cl]Cl {L1: tris((1H-benzo[d]imidazol-2-yl)methyl)amine; n = 1 and L2: tris(N-methylbenzimidazol-2-ylmethyl)amine; n = 2} have been designed to be potential catalysts for OAPH (o-aminophenol) oxidation. Both the ligands and their corresponding metal complexes have been successfully synthesized and thoroughly characterized by different spectroscopic and analytical techniques such as FT-IR, 1H NMR, UV-vis spectroscopy, EPR spectroscopy and ESI mass spectroscopy. The molecular structures of [MnII(L1)Cl]Cl (1) and [MnII(L2)Cl]Cl (2) have been revealed by a single-crystal X-ray diffraction study. The spectral properties and redox behaviour of both the complexes were examined. Under ambient conditions, 1 and 2 show excellent phenoxazinone synthase activity as both are very susceptible to oxidize o-aminophenol to phenoxazinone. The kinetic parameters for both complexes have been determined by analyzing the experimental spectroscopic data. The turnover numbers (kcat value) of these two complexes are extremely high, 440 h-1 and 234 h-1 for 1 and 2, respectively. The present report offers a thorough overview of information involving the role of the metal ions and their extent of phenoxazinone synthase mimicking activity. The oxidation of o-aminophenol to 2-amino-3H-phenoxazine-3-one (APX) by catalytic oxidation of oxygen (O2) by the reaction with transition metal complexes has been an important study for the last few decades. The current study evidently showed better performance of our synthesized Mn(II) complexes than all the predecessors. The plausible mechanism has been reiterated based on the experimental data via ESI-MS spectra and considering the concepts from the previously reported mechanisms involved in the formation of hydrogen peroxide (H2O2) as an intermediate substrate is fairly indicating the involvement of molecular oxygen in the catalytic cycle.
Collapse
Affiliation(s)
- Sadananda Kumbhakar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Bishnubasu Giri
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kalai Selvan Karumban
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
10
|
Khutsishvili SS, Ganenko TV, Sukhov BG. Formation and paramagnetic properties of manganese-containing bionanocomposites based on natural polysaccharide matrices. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1990314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Spartak S. Khutsishvili
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tat’yana V. Ganenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Boris G. Sukhov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Meichsner SL, Kutin Y, Kasanmascheff M. In‐Cell Characterization of the Stable Tyrosyl Radical in
E. coli
Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shari L. Meichsner
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
12
|
Meichsner SL, Kutin Y, Kasanmascheff M. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19155-19161. [PMID: 33844392 PMCID: PMC8453577 DOI: 10.1002/anie.202102914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Indexed: 12/21/2022]
Abstract
The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di‐iron tyrosyl radical (Y122.) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the β2 subunit has accumulated over the years; yet little information exists on the in vivo Y122.. Here, we characterize this essential radical in whole cells. Multi‐frequency EPR and electron‐nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per β2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3Y122., in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.
Collapse
Affiliation(s)
- Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Abdullin D, Schiemann O. Localization of metal ions in biomolecules by means of pulsed dipolar EPR spectroscopy. Dalton Trans 2021; 50:808-815. [PMID: 33416053 DOI: 10.1039/d0dt03596c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are important for the folding, structure, and function of biomolecules. Thus, knowing where their binding sites are located in proteins or oligonucleotides is a critical objective. X-ray crystallography and nuclear magnetic resonance are powerful methods in this respect, but both have their limitations. Here, a complementary method is highlighted in which paramagnetic metal ions are localized by means of trilateration using a combination of site-directed spin labeling and pulsed dipolar electron paramagnetic resonance spectroscopy. The working principle, the requirements, and the limitations of the method are critically discussed. Several applications of the method are outlined and compared with each other.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
| | | |
Collapse
|
14
|
Šimėnas M, O'Sullivan J, Zollitsch CW, Kennedy O, Seif-Eddine M, Ritsch I, Hülsmann M, Qi M, Godt A, Roessler MM, Jeschke G, Morton JJL. A sensitivity leap for X-band EPR using a probehead with a cryogenic preamplifier. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 322:106876. [PMID: 33264732 DOI: 10.1016/j.jmr.2020.106876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Inspired by the considerable success of cryogenically cooled NMR cryoprobes, we present an upgraded X-band EPR probehead, equipped with a cryogenic low-noise preamplifier. Our setup suppresses source noise, can handle the high microwave powers typical in X-band pulsed EPR, and is compatible with the convenient resonator coupling and sample access found on commercially available spectrometers. Our approach allows standard pulsed and continuous-wave EPR experiments to be performed at X-band frequency with significantly increased sensitivity compared to the unmodified setup. The probehead demonstrates a voltage signal-to-noise ratio (SNR) enhancement by a factor close to 8× at a temperature of 6 K, and remains close to 2× at room temperature. By further suppressing room-temperature noise at the expense of reduced microwave power (and thus minimum π-pulse length), the factor of SNR improvement approaches 15 at 6 K, corresponding to an impressive 200-fold reduction in EPR measurement time. We reveal the full potential of this probehead by demonstrating such SNR improvements using a suite of typical hyperfine and dipolar spectroscopy experiments on exemplary samples.
Collapse
Affiliation(s)
- Mantas Šimėnas
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK.
| | - James O'Sullivan
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | | | - Oscar Kennedy
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Maryam Seif-Eddine
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| | - Irina Ritsch
- ETH Zürich, Department of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| | - Gunnar Jeschke
- ETH Zürich, Department of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - John J L Morton
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Electronic & Electrical Engineering, UCL, London WC1E 7JE, UK.
| |
Collapse
|
15
|
Williams L, Tischlik S, Scherer A, Fischer JWA, Drescher M. Site-directed attachment of photoexcitable spin labels for light-induced pulsed dipolar spectroscopy. Chem Commun (Camb) 2020; 56:14669-14672. [PMID: 33159780 DOI: 10.1039/d0cc03101a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoexcited triplet states are gaining popularity as spin labels in pulsed electron paramagnetic resonance (EPR) spectroscopy. Here, we demonstrate that the fluorophores Eosin Y, Rose Bengal and Atto Thio12 are suitable markers for distance determination by laser-induced magnetic dipole (LaserIMD) spectroscopy in proteins that lack an intrinsic photoexcitable center.
Collapse
Affiliation(s)
- Lara Williams
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
16
|
Gamble Jarvi A, Sargun A, Bogetti X, Wang J, Achim C, Saxena S. Development of Cu 2+-Based Distance Methods and Force Field Parameters for the Determination of PNA Conformations and Dynamics by EPR and MD Simulations. J Phys Chem B 2020; 124:7544-7556. [PMID: 32790374 DOI: 10.1021/acs.jpcb.0c05509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu2+ complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations with newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV-vis and circular dichroism measurements and assess the efficacy of the Cu2+ label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu2+ label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu2+ EPR at X-band. These results present for the first time a rigid Cu2+ spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Artur Sargun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
18
|
Keller K, Ritsch I, Hintz H, Hülsmann M, Qi M, Breitgoff FD, Klose D, Polyhach Y, Yulikov M, Godt A, Jeschke G. Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(ii) centres. Phys Chem Chem Phys 2020; 22:21707-21730. [DOI: 10.1039/d0cp03105d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel approaches to quantitatively analyse distributed exchange couplings are described and tested on experimental data sets for stiff synthetic molecules.
Collapse
|
19
|
León-Alcaide L, López-Cabrelles J, Mínguez Espallargas G, Coronado E. 2D magnetic MOFs with micron-lateral size by liquid exfoliation. Chem Commun (Camb) 2020; 56:7657-7660. [DOI: 10.1039/d0cc02982c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we obtained high-quality nanosheets for a whole family of Fe-based magnetic MOFs, MUV-1-X, through a liquid exfoliation procedure.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- 46980 Paterna
- Spain
| | | | | | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- 46980 Paterna
- Spain
| |
Collapse
|
20
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
21
|
Hetzke T, Bowen AM, Vogel M, Gauger M, Suess B, Prisner TF. Binding of tetracycline to its aptamer determined by 2D-correlated Mn 2+ hyperfine spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:105-114. [PMID: 31039520 DOI: 10.1016/j.jmr.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The tetracycline-binding RNA aptamer (TC-aptamer) binds its cognate ligand the antibiotic tetracycline (TC) via a Mg2+ or Mn2+ ion with high affinity at high divalent metal ion concentrations (KD=800pM, ⩾10 mM). These concentrations lie above the physiological divalent metal ion concentration of ca. 1 mM and it is known from literature, that the binding affinity decreases upon decreasing the divalent metal ion concentration. This work uses a Mn2+ concentration of 1 mM and 1D-hyperfine experiments reveal two pronounced 31P couplings from the RNA besides the 13C signal of 13C-labeled TC. From these 1D-hyperfine data alone, however, no conclusions can be drawn on the binding of TC. Either TC may bind via Mn2+ to the aptamer or TC may form a free Mn-TC complex and some Mn2+ also binds to the aptamer. In this work, we show using 2D-correlated hyperfine spectroscopy at Q-band frequencies (34 GHz), that the 13C and 31P signals can be correlated; thus arising from a single species. We use THYCOS (triple hyperfine correlation spectroscopy) and 2D ELDOR-detected NMR (2D electron electron double resonance detected NMR) for this purpose showing that they are suitable techniques to correlate two different nuclear spin species (13C and 31P) on two different molecules (RNA and TC) to the same electron spin (Mn2+). Out of the two observed 31P-hyperfine couplings, only one shows a clear correlation to 13C. Although THYCOS and 2D EDNMR yield identical results, 2D EDNMR is far more sensitive. THYCOS spectra needed a time factor of ×20 in comparison to 2D EDNMR to achieve a comparable signal-to-noise.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alice M Bowen
- Center for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Dal Farra MG, Richert S, Martin C, Larminie C, Gobbo M, Bergantino E, Timmel CR, Bowen AM, Di Valentin M. Light-Induced Pulsed EPR Dipolar Spectroscopy on a Paradigmatic Hemeprotein. Chemphyschem 2019; 20:931-935. [PMID: 30817078 PMCID: PMC6618045 DOI: 10.1002/cphc.201900139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.
Collapse
Affiliation(s)
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- current affiliation: Institute of Physical ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Caterina Martin
- Department of BiologyUniversity of Padovaviale G. Colombo 335121PadovaItaly
- current affiliation: Groningen Biomolecular Science and Biotechnology InstituteUniversity of Groningen9700 ABGroningenThe Netherlands
| | - Charles Larminie
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | | | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alice M. Bowen
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marilena Di Valentin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
23
|
Zhang Y, Jia AQ, Zhang JJ, Xin Z, Zhang QF. Syntheses, structures and catalytic properties of new mononuclear terpyridine-manganese(II) complexes with tetraphenylimido-diphosphinate and diphenylphosphinate ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1587163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ying Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P. R. China
| | - Ai-Quan Jia
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P. R. China
| | - Jing-Jing Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P. R. China
| | - Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P. R. China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P. R. China
| |
Collapse
|
24
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
25
|
Keller K, Qi M, Gmeiner C, Ritsch I, Godt A, Jeschke G, Savitsky A, Yulikov M. Intermolecular background decay in RIDME experiments. Phys Chem Chem Phys 2019; 21:8228-8245. [DOI: 10.1039/c8cp07815g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical and experimental studies of the RIDME background reveal electron and nuclear spectral diffusion contributions.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Physics Department
- Technical University Dortmund
- Dortmund
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
26
|
Gamble Jarvi A, Ranguelova K, Ghosh S, Weber RT, Saxena S. On the Use of Q-Band Double Electron–Electron Resonance To Resolve the Relative Orientations of Two Double Histidine-Bound Cu2+ Ions in a Protein. J Phys Chem B 2018; 122:10669-10677. [DOI: 10.1021/acs.jpcb.8b07727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kalina Ranguelova
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ralph T. Weber
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
28
|
Kuzhelev AA, Krumkacheva OA, Shevelev GY, Yulikov M, Fedin MV, Bagryanskaya EG. Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide. Phys Chem Chem Phys 2018; 20:10224-10230. [PMID: 29594278 DOI: 10.1039/c8cp01093e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Ghosh S, Lawless MJ, Rule GS, Saxena S. The Cu 2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:163-171. [PMID: 29272745 DOI: 10.1016/j.jmr.2017.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/09/2023]
Abstract
Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
30
|
Zhao Q, Yu LT, Luo BM, Liu XD, Liu SJ. Construction and properties investigation of propeller type and three-fold interpenetration topology Mn(II) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Yang Y, Gong YJ, Litvinov A, Liu HK, Yang F, Su XC, Goldfarb D. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins. Phys Chem Chem Phys 2017; 19:26944-26956. [DOI: 10.1039/c7cp04311b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The coordination mode of the metal ion in the spin label affects the distance distribution determined by DEER distance measurements.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Aleksei Litvinov
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Hong-Kai Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
32
|
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M. Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels. Phys Chem Chem Phys 2017; 19:17856-17876. [DOI: 10.1039/c7cp01524k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Valerie Mertens
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anna I. Nalepa
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
33
|
Lawless MJ, Ghosh S, Cunningham TF, Shimshi A, Saxena S. On the use of the Cu2+–iminodiacetic acid complex for double histidine based distance measurements by pulsed ESR. Phys Chem Chem Phys 2017; 19:20959-20967. [DOI: 10.1039/c7cp02564e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+-based DEER signal of the double histidine motif was increased by a factor of two by understanding optimal loading conditions.
Collapse
Affiliation(s)
- M. J. Lawless
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Ghosh
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - T. F. Cunningham
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - A. Shimshi
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| |
Collapse
|