1
|
Kalikin NN, Budkov YA. Modified Debye-Hückel-Onsager theory for electrical conductivity in aqueous electrolyte solutions: Account of ionic charge nonlocality. J Chem Phys 2024; 161:174502. [PMID: 39484901 DOI: 10.1063/5.0231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
This paper presents a mean field theory of electrolyte solutions, extending the classical Debye-Hückel-Onsager theory to provide a detailed description of the electrical conductivity in strong electrolyte solutions. The theory systematically incorporates the effects of ion specificity, such as steric interactions, hydration of ions, and their spatial charge distributions, into the mean-field framework. This allows for the calculation of ion mobility and electrical conductivity, while accounting for relaxation and hydrodynamic phenomena. At low concentrations, the model reproduces the well-known Kohlrausch's limiting law. Using the exponential (Slater-type) charge distribution function for solvated ions, we demonstrate that experimental data on the electrical conductivity of aqueous 1:1, 2:1, and 3:1 electrolyte solutions can be approximated over a broad concentration range by adjusting a single free parameter representing the spatial scale of the nonlocal ion charge distribution. Using the fitted value of this parameter at 298.15 K, we obtain good agreement with the available experimental data when calculating electrical conductivity across different temperatures. We also analyze the effects of temperature and electrolyte concentration on the relaxation and electrophoretic contributions to total electrical conductivity, explaining the underlying physical mechanisms responsible for the observed behavior.
Collapse
Affiliation(s)
- Nikolai N Kalikin
- Laboratory of Multiscale Modeling of Molecular Systems, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia
| | - Yury A Budkov
- Laboratory of Multiscale Modeling of Molecular Systems, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia
- Laboratory of Computational Physics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia
| |
Collapse
|
2
|
Fedotova MV, Chuev GN. The Three-Dimensional Reference Interaction Site Model Approach as a Promising Tool for Studying Hydrated Viruses and Their Complexes with Ligands. Int J Mol Sci 2024; 25:3697. [PMID: 38612508 PMCID: PMC11011341 DOI: 10.3390/ijms25073697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Viruses are the most numerous biological form living in any ecosystem. Viral diseases affect not only people but also representatives of fauna and flora. The latest pandemic has shown how important it is for the scientific community to respond quickly to the challenge, including critically assessing the viral threat and developing appropriate measures to counter this threat. Scientists around the world are making enormous efforts to solve these problems. In silico methods, which allow quite rapid obtention of, in many cases, accurate information in this field, are effective tools for the description of various aspects of virus activity, including virus-host cell interactions, and, thus, can provide a molecular insight into the mechanism of virus functioning. The three-dimensional reference interaction site model (3D-RISM) seems to be one of the most effective and inexpensive methods to compute hydrated viruses, since the method allows us to provide efficient calculations of hydrated viruses, remaining all molecular details of the liquid environment and virus structure. The pandemic challenge has resulted in a fast increase in the number of 3D-RISM calculations devoted to hydrated viruses. To provide readers with a summary of this literature, we present a systematic overview of the 3D-RISM calculations, covering the period since 2010. We discuss various biophysical aspects of the 3D-RISM results and demonstrate capabilities, limitations, achievements, and prospects of the method using examples of viruses such as influenza, hepatitis, and SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., 142290 Pushchino, Russia
| |
Collapse
|
3
|
Xu Y, Guo Y. New Local Composition Model for Correlating of the Molar Conductivity of Ionic Liquid-Solvent Systems over the Whole Concentration Range. J Phys Chem B 2024; 128:2181-2189. [PMID: 38407026 DOI: 10.1021/acs.jpcb.3c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Considering that traditional electrolyte models are limited to use in the solvent-rich region, the development of new models to describe the molar conductivity (Λm) over the whole concentration range of ionic liquid (IL)-solvent systems is a meaningful study. Based on the idea of local composition and the law of independent ion migration, a new model is proposed in this study and used to successfully correlate the relationship between Λm and composition over the whole concentration range for 18 IL-solvent systems with satisfactory fitting accuracy. Meanwhile, the electrical conductivity (κ) of the systems is estimated using the calculated Λm. Moreover, the strength of anion-cation, anion-solvent, and cation-solvent interactions in the systems is explored by the obtained energy parameters, and the effect of the solvent on the interactions is investigated. The proposed model provides a new method to accurately describe the conductivity property of IL-solvent systems over the whole concentration range.
Collapse
Affiliation(s)
- Yingjie Xu
- Department of Chemistry, Shaoxing University, Shaoxing 312000, China
| | - Yujun Guo
- Department of Chemistry, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
4
|
Bendová M, Heyda J, Wagner Z, Feder-Kubis J, Polák J, Tankam T, Sýkorová A. Aqueous solutions of chiral ionic liquids based on (–)-menthol: An experimental and computational study of volumetric and transport properties. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
5
|
Takamuku T, Nishiyama D, Kawano M, Miannay FA, Idrissi A. Solvation structure and dynamics of coumarin 153 in an imidazolium-based ionic liquid with chloroform, benzene, and propylene carbonate. Phys Chem Chem Phys 2023; 25:9868-9880. [PMID: 36946188 DOI: 10.1039/d2cp05858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In order to determine the self-diffusion coefficients D of all the species in the solutions at 298.2 K, 1H and 19F NMR diffusion ordered spectroscopy (DOSY) has been conducted on coumarin 153 (C153) in binary mixed solvents of an imidazolium-based ionic liquid (IL), 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (C12mimTFSA), with three molecular liquids (MLs) of chloroform (CL), benzene (BZ), and propylene carbonate (PC) as a function of ML mole fraction xML. Below xML ≈ 0.8, the D values of each species do not significantly depend on the MLs. However, above this mole fraction, the diffusion of C153 becomes smoother in the order of BZ ≈ CL > PC systems. The interactions among C153, C12mim+, TFSA-, and ML molecules have been investigated using infrared (IR) and 1H and 13C NMR spectroscopic techniques. The relations of the diffusion of the species with the interactions among them have been discussed on the molecular scale. In the IL solution, the C153 carbonyl oxygen atom is hydrogen-bonded with the imidazolium ring C2-H atom of C12mim+. C12mim+ also forms an ion pair with TFSA-. Thus, C153, C12mim+, and TFSA- cooperatively move in the CL and BZ solutions at a lower ML content, xML < ∼0.8. On the other hand, at a higher ML content, xML > ∼0.8, the C153 molecule diffuses with CL and BZ molecules because of the hydrogen bonding between the C153 carbonyl O atom and the CL H atom and the π-π interaction between the C153 and BZ ring planes, respectively. For the PC system, the change in the relative self-diffusion coefficients of each species with increasing xML differs from those for the CL and BZ systems because of both hydrogen bonding donor H and acceptor O atoms of PC for C153, the IL cation and anion, and PC themselves.
Collapse
Affiliation(s)
- Toshiyuki Takamuku
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan.
| | - Daiki Nishiyama
- Functional Biomolecular Science, Graduate School of Advanced Health Sciences, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Masahiro Kawano
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - François-Alexandre Miannay
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR CNRS A8516, Université de Lille, Science et Technologies, 59655 Villeneuve d'Ascq, France
| | - Abdenacer Idrissi
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR CNRS A8516, Université de Lille, Science et Technologies, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
6
|
Cao S, Kalin ML, Huang X. EPISOL: A software package with expanded functions to perform 3D-RISM calculations for the solvation of chemical and biological molecules. J Comput Chem 2023; 44:1536-1549. [PMID: 36856731 DOI: 10.1002/jcc.27088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/24/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
Integral equation theory (IET) provides an effective solvation model for chemical and biological systems that balances computational efficiency and accuracy. We present a new software package, the expanded package for IET-based solvation (EPISOL), that performs 3D-reference interaction site model (3D-RISM) calculations to obtain the solvation structure and free energies of solute molecules in different solvents. In EPISOL, we have implemented 22 different closures, multiple free energy functionals, and new variations of 3D-RISM theory, including the recent hydrophobicity-induced density inhomogeneity (HI) theory for hydrophobic solutes and ion-dipole correction (IDC) theory for negatively charged solutes. To speed up the convergence and enhance the stability of the self-consistent iterations, we have introduced several numerical schemes in EPISOL, including a newly developed dynamic mixing approach. We show that these schemes have significantly reduced the failure rate of 3D-RISM calculations compared to AMBER-RISM software. EPISOL consists of both a user-friendly graphic interface and a kernel library that allows users to call its routines and adapt them to other programs. EPISOL is compatible with the force-field and coordinate files from both AMBER and GROMACS simulation packages. Moreover, EPISOL is equipped with an internal memory control to efficiently manage the use of physical memory, making it suitable for performing calculations on large biomolecules. We demonstrate that EPISOL can efficiently and accurately calculate solvation density distributions around various solute molecules (including a protein chaperone consisting of 120,715 atoms) and obtain solvent free energy for a wide range of organic compounds. We expect that EPISOL can be widely applied as a solvation model for chemical and biological systems. EPISOL is available at https://github.com/EPISOLrelease/EPISOL.
Collapse
Affiliation(s)
- Siqin Cao
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael L Kalin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
The Physicochemical Properties of Selected Imidazolium Chloride Ionic Liquids in Tetraethylene Glycol: Experimental and Computational Approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Tomaš R, Vraneš M, Krešo A, Kinart Z, Borović TT, Papović S. Volumetric Properties of the Dilute Solutions of Imidazolium-Based Ionic Liquids in Butan-2-ol or Butan-2-one. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Bomhardt K, Schneider P, Glaser T, Dürr M. Surface Properties of Ionic Liquids: A Mass Spectrometric View Based on Soft Cluster-Induced Desorption. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:974-980. [PMID: 35579531 DOI: 10.1021/jasms.2c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Desorption/ionization induced by neutral clusters (DINeC) in combination with mass spectrometry (MS) was used for the investigation of the molecular composition of the surface of ionic liquids (IL). Based on the surface sensitivity of DINeC-MS, accumulation of either cations or anions was discriminated on the surface of bulk IL depending on the molecular structure of the IL components. In particular, cations with long alkyl chains aggregate on the surface, but this tendency is more reduced the larger the respective anion is; in the case of larger anions and smaller cations, it can be even reversed. For thin layers of IL, the ratio between cations and anions as detected in the mass spectra was found to be further influenced by the substrate surface.
Collapse
Affiliation(s)
- Karolin Bomhardt
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Pascal Schneider
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Timo Glaser
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Michael Dürr
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| |
Collapse
|
10
|
A thermodynamic investigation of the effect of cationic structure on the self-aggregation behavior of Surface-Active ionic liquids in the presence of an amino acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chronopotentiometric Evaluation of Ionization Degree and Dissociation Constant of Imidazolium-Based Ionic Liquid [C6Meim][NTf2] in Polymeric Plasticized Membranes. MEMBRANES 2022; 12:membranes12020130. [PMID: 35207052 PMCID: PMC8877390 DOI: 10.3390/membranes12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Ionic liquids (ILs) have a wide variety of applications in modern electrochemistry due to their unique electrolytic properties. In particular, they are promising candidates as dopants for polymeric membranes in potentiometric sensors and liquid-junction free reference electrodes. However, the effective use of ILs requires a comprehensive understanding of their electrolytic behavior in the polymeric phase. We report here the exploration of the electrolytic and diffusion properties of IL 1-hexyl-3-methyl-1H-imidazol-3-ium bis[(trifluoromethyl)sulfonyl]amide ([C6Meim][NTf2]) in a poly(vinyl chloride) matrix. Chronopotentiometry is utilized to determine the concentration of charge carriers, ionic diffusion coefficients and apparent dissociation constant of [C6Meim][NTf2] in PVC membranes plasticized with a mixture of [C6Meim][NTf2] and bis(2-ethylhexyl) sebacate (DOS) over a wide range of IL concentrations. The diffusion properties of [C6Meim][NTf2] are confirmed by NMR-diffusometry. The non-monotonic electrolytic behavior of the IL in PVC-DOS matrix is described for the first time. A maximum ionization degree and diffusion coefficient is observed at 30 wt.% of IL in the plasticizing mixture. Thus, it is shown that by varying the flexible parameter of the IL to plasticizer ratio in the polymeric phase one can tune the electrolytic and transport properties of sensing PVC membranes.
Collapse
|
12
|
Tomaš R, Kinart Z, Tot A, Papović S, Teodora Borović T, Vraneš M. Volumetric properties, conductivity and computation analysis of selected imidazolium chloride ionic liquids in ethylene glycol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Friesen S, Fedotova MV, Kruchinin SE, Bešter-Rogač M, Podlipnik Č, Buchner R. Hydration and counterion binding of aqueous acetylcholine chloride and carbamoylcholine chloride. Phys Chem Chem Phys 2021; 23:25086-25096. [PMID: 34747952 DOI: 10.1039/d1cp03543f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hydration and Cl- ion binding of the neurot†ransmitter acetylcholine (ACh+) and its synthetic analogue, carbamoylcholine (CCh+), were studied by combining dilute-solution conductivity measurements with dielectric relaxation spectroscopy and statistical mechanics calculations at 1D-RISM and 3D-RISM level. Chloride ion binding was found to be weak but not negligible. From the ∼30 water molecules coordinating ACh and CCh+ only ∼1/3 is affected in its rotational dynamics by the cation, with the majority - situated close to the hydrophobic moieties - only retarded by a factor of ∼2.5. At vanishing solute concentration cations and the ∼3-4 H2O molecules hydrogen bonding to the CO group of the solute exhibit similar rotational dynamics but increasing concentration and temperature markedly dehydrates ACh+ and CCh+.
Collapse
Affiliation(s)
- Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Marina V Fedotova
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Kademicheskaya st. 1, 153045 Ivanovo, Russian Federation.
| | - Sergey E Kruchinin
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Kademicheskaya st. 1, 153045 Ivanovo, Russian Federation.
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
14
|
Song F, Xiao Y, An S, Wan R, Xu Y, Peng C, Liu H. Prediction of Infinite Dilution Molar Conductivity for Unconventional Ions: A Quantitative Structure–Property Relationship Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fan Song
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Xiao
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhao An
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ren Wan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingjie Xu
- Department of Chemistry, Shaoxing University, Shaoxing 312000, China
| | - Changjun Peng
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Investigation of iron(III) ionic structural complexes for seebeck coefficient enhancement using variation of ligand lengths with extended Π-conjugated bipyridyl ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 2021; 19:4248-4264. [PMID: 34429845 PMCID: PMC8355836 DOI: 10.1016/j.csbj.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Benedikt Frieg
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
de Izarra A, Choi C, Jang YH, Lansac Y. Ionic Liquid for PEDOT:PSS Treatment. Ion Binding Free Energy in Water Revealing the Importance of Anion Hydrophobicity. J Phys Chem B 2021; 125:1916-1923. [DOI: 10.1021/acs.jpcb.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
A chemometric investigation on the influence of the nature and concentration of supporting electrolyte on charging currents in electrochemistry. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Fedotova MV, Kruchinin SE, Chuev GN. Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Stańczyk M, Boruń A, Jóźwiak M. Molar conductivity and association constants of sodium salts of selected cinnamic acids in water at temperatures from 288.15 to 318.15 K. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Conductometric studies of dissociation constants of selected monocarboxylic acids a wide range of temperatures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Nordness O, Kelkar P, Stadtherr MA, Brennecke JF. Ion dissociation in aqueous 1-alkyl-3-methyl-imidazolium chlorides and the impact of microstructure formation. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1635276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oscar Nordness
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, USA
| | - Pratik Kelkar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, USA
| | - Mark A. Stadtherr
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, USA
| | - Joan F. Brennecke
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, USA
| |
Collapse
|
23
|
Cao S, Konovalov KA, Unarta IC, Huang X. Recent Developments in Integral Equation Theory for Solvation to Treat Density Inhomogeneity at Solute–Solvent Interface. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Siqin Cao
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Kirill A. Konovalov
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Ilona Christy Unarta
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Xuhui Huang
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- HKUST‐Shenzhen Research Institute Hi‐Tech Park, Nanshan Shenzhen 518057 China
| |
Collapse
|
24
|
Conductance and ionic association of selected imidazolium ionic liquids in various solvents: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Shaukat S, Fedotova MV, Kruchinin SE, Bešter-Rogač M, Podlipnik Č, Buchner R. Hydration and ion association of aqueous choline chloride and chlorocholine chloride. Phys Chem Chem Phys 2019; 21:10970-10980. [DOI: 10.1039/c9cp01016e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Choline hydration occurs predominantly via its hydroxyl group, and weak contact ion pair formation with Cl− is via the onium moiety.
Collapse
Affiliation(s)
- Saadia Shaukat
- Institute of Physical and Theoretical Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology
- Večna pot 113
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology
- Večna pot 113
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | - Richard Buchner
- Institute of Physical and Theoretical Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
26
|
Liu Y, Chen X, Men S, Licence P, Xi F, Ren Z, Zhu W. The impact of cation acidity and alkyl substituents on the cation–anion interactions of 1-alkyl-2,3-dimethylimidazolium ionic liquids. Phys Chem Chem Phys 2019; 21:11058-11065. [DOI: 10.1039/c9cp01381d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
XPS is used to probe the cation–anion interactions in 1-alkyl-2,3-dimethylimidazolium ionic liquids.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Xianze Chen
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Shuang Men
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Peter Licence
- School of Chemistry
- The University of Nottingham
- Nottingham
- UK
| | - Feng Xi
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Zhen Ren
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Weiwei Zhu
- School of Material Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| |
Collapse
|
27
|
Effect of cationic structure of surface active ionic liquids on their micellization: A thermodynamic study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Ramenskaya L, Grishina E, Kudryakova N. Physicochemical features of short-chain 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ionic liquids containing equilibrium water absorbed from air. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Interactions in aqueous solutions of imidazolium chloride ionic liquids [Cnmim][Cl] (n = 0, 1, 2, 4, 6, 8) from volumetric properties, viscosity B-coefficients and molecular dynamics simulations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wojsławski J, Białk-Bielińska A, Paszkiewicz M, Toński M, Stepnowski P, Dołżonek J. Evaluation of the sorption mechanism of ionic liquids onto multi-walled carbon nanotubes. CHEMOSPHERE 2018; 190:280-286. [PMID: 28992481 DOI: 10.1016/j.chemosphere.2017.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/01/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The knowledge of the sorption mechanism of different chemicals onto third generation carbon sorbents such as carbon nanotubes (CNTs) is needed in order to project systems for the effective removal of pollutants from the environment. This paper reports evaluation of the sorption mechanism of selected ionic liquids (ILs), being considered as potential pollutant in environment, onto various CNTs. CNTs characterized by the smallest diameter and the biggest surface area showed the highest sorption capacity to isolate ILs from an aqueous solution. CNTs with a bigger diameter, a functionalized surface and particularly a helical shape showed a lower sorption capacity. The sorption mechanism has been defined as complex, including van der Waals, π-π and electrostatic interactions with dominating π-π interactions. Due to the relatively high sorption coefficient (355.98 ± 20.69-6397.10 ± 355.42 L kg-1 depending on the IL) the study showed that multi-walled carbon nanotubes can potentially be used to effectively isolate ILs from an aqueous solution. Moreover, proved in this study, the fast sorption kinetic, and uncomplicated regeneration process, leading to an even higher sorption capacity, means that CNTs are promising material which could find potential applications in the treatment of water contaminated by ILs.
Collapse
Affiliation(s)
- Jerzy Wojsławski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
31
|
Apelblat A, Bešter-Rogač M. Classical problem of determination of limiting conductances of acetate anion revisited. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Fedotova MV, Kruchinin SE, Chuev GN. Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Men S, Jiang J, Licence P. Spectroscopic analysis of 1-butyl-2,3-dimethylimidazolium ionic liquids: Cation-anion interactions. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Qiao Y, Ma W, Theyssen N, Chen C, Hou Z. Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chem Rev 2017; 117:6881-6928. [DOI: 10.1021/acs.chemrev.6b00652] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wenbao Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chen Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
35
|
Usma CL, Pacios IE, Renamayor CS. Lyotropic Lamellar Structures of a Long-Chain Imidazolium and Their Application as Nanoreactors for X-ray-Initiated Polymerization. J Phys Chem B 2017; 121:2502-2510. [PMID: 28240884 DOI: 10.1021/acs.jpcb.6b12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lyotropic behavior of the ternary system formed by 1-tetradecyl-3-methylimidazolium chloride, 1-decanol, and water is investigated. A lamellar mesophase is formed for a wide range of compositions and is characterized by polarized optical microscopy, low-temperature scanning electron microscopy, small- and wide-angle X-ray scattering with synchrotron radiation, and differential scanning calorimetry. This phase presents onionlike structures. Two lamellar structures are formed: an Lα mesophase between 25 and 50 °C, with an isobaric thermal expansivity of the bilayer thickness of -3.2 × 10-3 K-1, and a lamellar gel phase, when the temperature decreases below 25 °C. This new medium is employed to perform in situ X-ray-initiated polymerization of N-isopropylacrylamide. When the monomer is incorporated in the lamellar structure, it is distributed between the water layer and bilayer interface and its polymerization can be followed by variations in the diffractograms with time.
Collapse
Affiliation(s)
- Cesar L Usma
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, UNED , Paseo Senda del Rey, 9, 28040 Madrid, Spain
| | - Isabel E Pacios
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, UNED , Paseo Senda del Rey, 9, 28040 Madrid, Spain
| | - Carmen S Renamayor
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, UNED , Paseo Senda del Rey, 9, 28040 Madrid, Spain
| |
Collapse
|