1
|
Baaloudj O, Vu NN, Assadi AA, Le VQ, Nguyen-Tri P. Recent advances in designing and developing efficient sillenite-based materials for photocatalytic applications. Adv Colloid Interface Sci 2024; 327:103136. [PMID: 38598926 DOI: 10.1016/j.cis.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Sillenite materials have been the subject of intense investigation for recent years due to their unique characteristics. They possess a distinct structure with space group I23, allowing them to exhibit distinctive features, such as an electronic structure ideal for certain applications such as photocatalysis. The present research delves into the structure, synthesis, and properties of sillenites, highlighting their suitability for photocatalysis. It explores also advanced engineering strategies for designing sillenite-based photocatalysts, including heterojunction formation, morphology modification, doping, and hybrid processes. Each strategy offers advantages and limitations that are critically discussed. The review then lists and discusses the photocatalytic performance of various sillenite-based systems recently developed for common applications, such as removing hazardous organic and inorganic contaminants, and even infrequent applications, such as microbial inactivation, H2 generation, CO2 reduction and N2 fixation. Finally, valuable insights and suggestions are put forward for future research directions in the field of sillenite-based photocatalysis. This comprehensive overview would provide a valuable resource for the development of efficient photocatalytic systems to address environmental and energy challenges.
Collapse
Affiliation(s)
- Oussama Baaloudj
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, 16111 Algiers, Algeria
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Aymen Amin Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia; Univ Rennes, ENSCR-équipe Chimie et Ingénierie des Procédés, URM 6226 CNRS, ENSCR-11, Allée de Beaulieu, CS, 508307-35708 Rennes, France
| | - Van Quyet Le
- Department of Materials Science and Engineering, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.
| |
Collapse
|
2
|
Preparation of amorphous Bi4V0.2Ti2.8O12 and its photocatalytic activity for the degradation of Basic Red 2. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Surface treatment for efficient photocarriers transfer and separation: A general case of nitric acid activated Bi4Ti3O12. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Preparation and Photocatalytic Performance for Degradation of Rhodamine B of AgPt/Bi 4Ti 3O 12 Composites. NANOMATERIALS 2020; 10:nano10112206. [PMID: 33167457 PMCID: PMC7694514 DOI: 10.3390/nano10112206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023]
Abstract
Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.
Collapse
|
5
|
Zhao X, Yang H, Li R, Cui Z, Liu X. Synthesis of heterojunction photocatalysts composed of Ag 2 S quantum dots combined with Bi 4 Ti 3 O 12 nanosheets for the degradation of dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5524-5538. [PMID: 30607858 DOI: 10.1007/s11356-018-4050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Facilitating the separation of photogenerated electron/hole pairs and widening the light-responsive region are crucial to enhance the overall photocatalytic performance of photocatalysts. To achieve this aim, here we have prepared Ag2S/Bi4Ti3O12 heterojunction composite photocatalysts by assembling Ag2S quantum dots onto the surface of Bi4Ti3O12 nanosheets. Transmission electron microscopy observation demonstrates that two types of Ag2S quantum dots separately with size of 40-70 and 7-17 nm are uniformly assembled onto the surface of large-sized Bi4Ti3O12 thin nanosheets. The as-prepared Ag2S/Bi4Ti3O12 heterojunction composites exhibit much enhanced light absorption (particularly in the visible and near-infrared region) and highly efficient separation of electrons and holes photogenerated in Bi4Ti3O12. Rhodamine B (RhB) aqueous solution was chosen as the target organic pollutant to evaluate the photocatalytic performance of the samples under simulated sunlight irradiation. It is found that the Ag2S/Bi4Ti3O12 heterojunction composites manifest significantly enhanced photocatalytic activity toward the RhB degradaton. In particular, the 15wt% Ag2S/Bi4Ti3O12 composite exhibits the highest photocatalytic activity, which is ca. 2.8 and 4.0 times higher than bare Bi4Ti3O12 and Ag2S, respectively. The enhanced photocatalytic activity of the composites can be explained as a result of the Z-scheme electron transfer from the conduction band of Bi4Ti3O12 to the valence band of Ag2S, and thus more photogenerated holes in the valence band of Bi4Ti3O12 and electrons in the conduction band of Ag2S are able to participate in the photocatalytic reactions. Active species trapping experiments were carried out, from which it is concluded that photogenerated holes and •O2- radicals play the dominant and secondary role in the photocatalysis, respectively.
Collapse
Affiliation(s)
- Xinxin Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Ruishan Li
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ziming Cui
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xueqin Liu
- School of Science, Chongqing University of Technology, Chongqing, 4000054, China
| |
Collapse
|
6
|
Significantly enhanced photocatalytic performance of mesoporous C@ZnO hollow nanospheres via suppressing charge recombination. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zhao X, Yang H, Cui Z, Wang X, Yi Z. Growth Process and CQDs-modified Bi₄Ti₃O 12 Square Plates with Enhanced Photocatalytic Performance. MICROMACHINES 2019; 10:E66. [PMID: 30669287 PMCID: PMC6356592 DOI: 10.3390/mi10010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
Bi₄Ti₃O12 square plates were synthesized via a hydrothermal route, and their growth process was systematically investigated. Carbon quantum dots (CQDs) were prepared using glucose as the carbon source, which were then assembled on the surface of Bi₄Ti₃O12 square plates via a hydrothermal route with the aim of enhancing the photocatalytic performance. XRD (X-ray powder diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance spectroscopy), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), PL (photoluminescence) spectroscopy, EIS (electrochemical impedance spectroscopy) and photocurrent spectroscopy were used to systematically characterize the as-prepared samples. It is demonstrated that the decoration of CQDs on Bi₄Ti₃O12 plates leads to an increased visible light absorption, slightly increased bandgap, increased photocurrent density, decreased charge-transfer resistance, and decreased PL intensity. Simulated sunlight and visible light were separately used as a light source to evaluate the photocatalytic activity of the samples toward the degradation of RhB in aqueous solution. Under both simulated sunlight and visible light irradiation, CQDs@Bi₄Ti₃O12 composites with an appropriate amount of CQDs exhibit obviously enhanced photocatalytic performance. However, the decoration of excessive CQDs gives rise to a decrease in the photocatalytic activity. The enhanced photocatalytic activity of CQDs-modified Bi₄Ti₃O12 can be attributed to the following reasons: (1) The electron transfer between Bi₄Ti₃O12 and CQDs promotes an efficient separation of photogenerated electron/hole pairs in Bi₄Ti₃O12; (2) the up-conversion photoluminescence emitted from CQDs could induce the generation of additional electron/hole pairs in Bi₄Ti₃O12; and (3) the photoexcited electrons in CQDs could participate in the photocatalytic reactions.
Collapse
Affiliation(s)
- Xinxin Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Ziming Cui
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Xiangxian Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
8
|
Wei K, Wang B, Hu J, Chen F, Hao Q, He G, Wang Y, Li W, Liu J, He Q. Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core–shell structure. RSC Adv 2019; 9:11377-11384. [PMID: 35520269 PMCID: PMC9063398 DOI: 10.1039/c8ra10592h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
It's highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2− (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH− (+2.27 eV).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Li
- South China Normal University
- China
| | | | - Qinyu He
- South China Normal University
- China
| |
Collapse
|
9
|
Du C, Yan B, Lin Z, Yang G. Cross-linked bond accelerated interfacial charge transfer in monolayer zinc indium sulfide (ZnIn2S4)/reduced graphene oxide (RGO) heterostructure for photocatalytic hydrogen production with mechanistic insight. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00841a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By separating the photo-excited charge carriers, the cross-linked bonds enabled the monolayer ZnIn2S4/RGO heterostructure to produce more H2.
Collapse
Affiliation(s)
- Chun Du
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center, School of Materials Science & Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center, School of Materials Science & Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhaoyong Lin
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center, School of Materials Science & Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center, School of Materials Science & Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
10
|
Gan H, Yi F, Zhang H, Qian Y, Jin H, Zhang K. Facile ultrasonic-assisted synthesis of micro–nanosheet structure Bi4Ti3O12/g-C3N4 composites with enhanced photocatalytic activity on organic pollutants. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Li F, Zhou J, Du C, Li W, Wang Y, He G, He Q. Preparation and photocatalytic properties of porous C and N co-doped TiO 2 deposited on brick by a fast, one-step microwave irradiation method. J Environ Sci (China) 2017; 60:24-32. [PMID: 29031442 DOI: 10.1016/j.jes.2017.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2 ((C, N)-TiO2) on commercial brick ((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV-vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron-hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for (C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the (C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron-hole pairs. (C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.
Collapse
Affiliation(s)
- Fangzhou Li
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Jiangshan Zhou
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Chun Du
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Wei Li
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Yinzhen Wang
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Guannan He
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China
| | - Qinyu He
- South China Normal University, School of Physics & Telecommunication Engineering, Guangzhou 510006, China.
| |
Collapse
|
12
|
Photoelectrocatalytic activity of an ordered and vertically aligned TiO 2 nanorod array/BDD heterojunction electrode. Sci Bull (Beijing) 2017; 62:619-625. [PMID: 36659302 DOI: 10.1016/j.scib.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/21/2023]
Abstract
Rutile TiO2 nanorod (TiNR) arrays were fabricated on a boron-doped diamond (BDD) substrate by a simple hydrothermal synthesis method. A fluorine-doped tin oxide (FTO) electrode grown with TiNR arrays was also prepared using the same technology for comparison. Field-emission scanning electron microscopy results show that oriented TiNR arrays can grow vertically on the surface of BDD and FTO electrodes. TiNR arrays grown on both electrodes had the same length (3μm). In comparison with the TiNR/FTO electrode, the TiNR/BDD electrode demonstrated a higher photoelectrocatalytic activity for the degradation of water and organic compounds, which is mostly attributed to the formation of a p-n heterojunction between the TiNR arrays and BDD at high potential, apart from the density of TiNR. A linear relationship between the photoelectrocatalytic current and the organic concentration can be observed on both electrodes. However, the linear range between net photoelectrocatalytic current values and organic compound concentrations for the TiNR/BDD electrode are much greater than those for the TiNR/FTO electrode, which makes the TiNR/BDD electrode a versatile material for the photocatalytic degradation and sensing of organic compounds.
Collapse
|
13
|
Qian K, Xia L, Jiang Z, Wei W, Chen L, Xie J. In situ chemical transformation synthesis of Bi4Ti3O12/I–BiOCl 2D/2D heterojunction systems for water pollution treatment and hydrogen production. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01162h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing visible light response and inhibiting the recombination of photogenerated charge carriers are vital for Bi4Ti3O12 nanosheets to achieve high activity in the fields of hydrogen generation and water pollutant treatment.
Collapse
Affiliation(s)
- Kun Qian
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang
- PR China
| | - Li Xia
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang
- PR China
| | - Zhifeng Jiang
- Institute for Energy Research
- Center of Analysis and Test
- Jiangsu University
- Zhenjiang
- PR China
| | - Wei Wei
- Institute for Energy Research
- Center of Analysis and Test
- Jiangsu University
- Zhenjiang
- PR China
| | - Linlin Chen
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang
- PR China
| | - Jimin Xie
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang
- PR China
| |
Collapse
|