1
|
Grabarek D, Andruniów T. Quantum chemistry study of the multiphoton absorption in enhanced green fluorescent protein at the single amino acid residue level. Chemphyschem 2022; 23:e202200335. [PMID: 35875840 DOI: 10.1002/cphc.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 11/11/2022]
Abstract
The chromophore (CRO) of fluorescent proteins (FPs) is embedded in a complex environment that is a source of specific interactions with the CRO. Understanding how these interactions influence FPs spectral properties is important for a directed design of novel markers with desired characteristics. In this work, we apply computational chemistry methods to gain insight into one-, two- and three-photon absorption (1PA, 2PA, 3PA) tuning in enhanced green fluorescent protein (EGFP). To achieve this goal, we built EGFP models differing in: i) number and position of hydrogen-bonds (h-bonds) donors to the CRO and ii) the electric field, as approximated by polarizable force field, acting on the CRO. We find that h-bonding to the CRO's phenolate oxygen results in stronger one- and multiphoton absorption. The brighter absorption can be also achieved by creating more positive electric field near the CRO's phenolate moiety. Interestingly, while individual CRO-environment h-bonds usually enhance 1PA and 2PA, it takes a few h-bond donors to enhance 3PA. Clearly, response of the absorption intensity to many-body effects depends on the excitation mechanism. We further employ symmetry-adapted perturbation theory (SAPT) to reveal excellent (2PA) and good (3PA) correlation of multiphoton intensity with electrostatic and induction interaction energies. This points to importance of accounting for mutual CRO-environment polarization in quantitative calculations of absorption spectra in FPs.
Collapse
Affiliation(s)
| | - Tadeusz Andruniów
- Wroclaw University of Science and Technology, Chemistry, Wyb. Wyspianskiego, 30-516, Wroclaw, POLAND
| |
Collapse
|
2
|
Rossano‐Tapia M, Brown A. Quantum mechanical/molecular mechanical studies of photophysical properties of fluorescent proteins. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alex Brown
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| |
Collapse
|
3
|
Dundas KHM, Beerepoot MTP, Ringholm M, Reine S, Bast R, List NH, Kongsted J, Ruud K, Olsen JMH. Harmonic Infrared and Raman Spectra in Molecular Environments Using the Polarizable Embedding Model. J Chem Theory Comput 2021; 17:3599-3617. [PMID: 34009969 PMCID: PMC8278393 DOI: 10.1021/acs.jctc.0c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/14/2022]
Abstract
We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric dipole moments and dipole-dipole polarizabilities within the PE model. The derivatives are implemented using a general open-ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating accurate vibrational spectra of molecules embedded in realistic environments.
Collapse
Affiliation(s)
- Karen
Oda Hjorth Minde Dundas
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maarten T. P. Beerepoot
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Magnus Ringholm
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Radovan Bast
- Department
of Information Technology, UiT The Arctic
University of Norway, N-9037 Tromsø, Norway
| | - Nanna Holmgaard List
- Department
of Chemistry and the PULSE Institute, Stanford
University, 94305 Stanford, California, United States
- SLAC
National Accelerator Laboratory, 94025 Menlo Park, California, United States
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
4
|
Fu M, Wesolowski TA. The Challenge of Accurate Computation of Two-Photon Absorption Properties of Organic Chromophores in the Condensed Phase. J Chem Theory Comput 2021; 17:3652-3665. [PMID: 33944563 DOI: 10.1021/acs.jctc.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two strategies are applied to evaluate the effect of the environment on the two-photon absorption (TPA) cross sections for two characteristic excited states of C2H4 upon complexation with H2O. The supermolecular strategy provides the reference complexation-induced shifts and uses either the EOM-CCSD or ADC(2) method. The embedding strategy is based on frozen-density-embedding theory (FDET) and uses only fundamental constants. The TPA cross sections from high-level supermolecular calculations are extremely basis-set-sensitive. Literature data and the present study indicate that accuracy of the absolute TPA cross sections below 100 atomic units and their shifts below 10 atomic units remains a challenge. The obtained FDET results show a similar basis-set behavior. For the largest basis set (d-aug-cc-pVQZ), TPA cross sections obtained from these two strategies are in excellent agreement. The complexation-induced shifts have the correct sign of the effect and a small (12-33%) relative error in magnitude. The deviations of the FDET-derived shifts from the reference are of similar magnitude as the reliability threshold of the reference shifts.
Collapse
Affiliation(s)
- Mingxue Fu
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Tomasz A Wesolowski
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
5
|
Grabarek D, Andruniów T. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins? J Chem Theory Comput 2020; 16:6439-6455. [PMID: 32862643 PMCID: PMC7586329 DOI: 10.1021/acs.jctc.0c00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
systematically investigate an impact of the size and content
of a quantum (QM) region, treated at the density functional theory
level, in embedding calculations on one- (OPA) and two-photon absorption
(TPA) spectra of the following fluorescent proteins (FPs) models: Aequorea victoria green FP (avGFP) with neutral (avGFP-n)
and anionic (avGFP-a) chromophore as well as Citrine FP. We find that
amino acid (a.a.) residues as well as water molecules hydrogen-bonded
(h-bonded) to the chromophore usually boost both OPA and TPA processes
intensity. The presence of hydrophobic a.a. residues in the quantum
region also non-negligibly affects both absorption spectra but decreases
absorption intensity. We conclude that to reach a quantitative description
of OPA and TPA spectra in multiscale modeling of FPs, the quantum
region should consist of a chromophore and most of a.a. residues and
water molecules in a radius
of 0.30–0.35 nm (ca. 200–230 atoms)
when the remaining part of the system is approximated by the electrostatic
point-charges. The optimal size of the QM region can be reduced to
80–100 atoms by utilizing a more advanced polarizable embedding
model. We also find components of the QM region that are specific
to a FP under study. We propose that the F165 a.a. residue is important
in tuning the TPA spectrum of avGFP-n but not other investigated FPs.
In the case of Citrine, Y203 and M69 a.a. residues must definitely
be part of the QM subsystem. Furthermore, we find that long-range
electrostatic interactions between the QM region and the rest of the
protein cannot be neglected even for the most extensive QM regions
(ca. 350 atoms).
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Rossano-Tapia M, Olsen JMH, Brown A. Two-Photon Absorption Cross-Sections in Fluorescent Proteins Containing Non-canonical Chromophores Using Polarizable QM/MM. Front Mol Biosci 2020; 7:111. [PMID: 32596253 PMCID: PMC7303285 DOI: 10.3389/fmolb.2020.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Multi-photon absorption properties, particularly two-photon absorption (2PA), of fluorescent proteins (FPs) have made them attractive tools in deep-tissue clinical imaging. Although the diversity of photophysical properties for FPs is wide, there are some caveats predominant among the existing FP variants that need to be overcome, such as low quantum yields and small 2PA cross-sections. From a computational perspective, Salem et al. (2016) suggested the inclusion of non-canonical amino acids in the chromophore of the red fluorescent protein DsRed, through the replacement of the tyrosine amino acid. The 2PA properties of these new non-canonical chromophores (nCCs) were determined in vacuum, i.e., without taking into account the protein environment. However, in the computation of response properties, such as 2PA cross-sections, the environment plays an important role. To account for environment and protein-chromophore coupling effects, quantum mechanical/molecular mechanical (QM/MM) schemes can be useful. In this work, the polarizable embedding (PE) model is employed along with time-dependent density functional theory to describe the 2PA properties of a selected set of chromophores made from non-canonical amino acids as they are embedded in the DsRed protein matrix. The objective is to provide insights to determine whether or not the nCCs could be developed and, thus, generate a new class of FPs. Results from this investigation show that within the DsRed environment, the nCC 2PA cross-sections are diminished relative to their values in vacuum. However, further studies toward understanding the 2PA limit of these nCCs using different protein environments are needed.
Collapse
Affiliation(s)
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Scheurer M, Reinholdt P, Kjellgren ER, Haugaard Olsen JM, Dreuw A, Kongsted J. CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. J Chem Theory Comput 2019; 15:6154-6163. [PMID: 31580670 DOI: 10.1021/acs.jctc.9b00758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a modular open-source library for polarizable embedding (PE) named CPPE. The library is implemented in C++, and it additionally provides a Python interface for rapid prototyping and experimentation in a high-level scripting language. Our library integrates seamlessly with existing quantum chemical program packages through an intuitive and minimal interface. Until now, CPPE has been interfaced to three packages, Q-Chem, Psi4, and PySCF. Furthermore, we show CPPE in action using all three program packages for a computational spectroscopy application. With CPPE, host program interfaces only require minor programming effort, paving the way for new combined methodologies and broader availability of the PE model.
Collapse
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany.,Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , UiT the Arctic University of Norway , N-9037 Tromsø , Norway
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
8
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
9
|
Rossano-Tapia M, Brown A. Determination of Two-Photon-Absorption Cross Sections Using Time-Dependent Density Functional Theory Tight Binding: Application to Fluorescent Protein Chromophores. J Chem Theory Comput 2019; 15:3153-3161. [DOI: 10.1021/acs.jctc.9b00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Rossano-Tapia
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
10
|
Reinholdt P, Nørby MS, Kongsted J. Modeling of Magnetic Circular Dichroism and UV/Vis Absorption Spectra Using Fluctuating Charges or Polarizable Embedding within a Resonant-Convergent Response Theory Formalism. J Chem Theory Comput 2018; 14:6391-6404. [DOI: 10.1021/acs.jctc.8b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Morten S. Nørby
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Scheurer M, Herbst MF, Reinholdt P, Olsen JMH, Dreuw A, Kongsted J. Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. J Chem Theory Comput 2018; 14:4870-4883. [DOI: 10.1021/acs.jctc.8b00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Michael F. Herbst
- Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
12
|
de Wergifosse M, Botek E, De Meulenaere E, Clays K, Champagne B. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins. J Phys Chem B 2018; 122:4993-5005. [DOI: 10.1021/acs.jpcb.8b01430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marc de Wergifosse
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Edith Botek
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Evelien De Meulenaere
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
13
|
Marazzi M, Gattuso H, Monari A, Assfeld X. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules. Front Chem 2018; 6:86. [PMID: 29666792 PMCID: PMC5891624 DOI: 10.3389/fchem.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Collapse
Affiliation(s)
- Marco Marazzi
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France.,Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Hugo Gattuso
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
14
|
Hršak D, Olsen JMH, Kongsted J. Polarizable Density Embedding Coupled Cluster Method. J Chem Theory Comput 2018; 14:1351-1360. [DOI: 10.1021/acs.jctc.7b01153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dalibor Hršak
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
15
|
Di Remigio R, Beerepoot MTP, Cornaton Y, Ringholm M, Steindal AH, Ruud K, Frediani L. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation. Phys Chem Chem Phys 2018; 19:366-379. [PMID: 27905594 DOI: 10.1039/c6cp06814f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.
Collapse
Affiliation(s)
- Roberto Di Remigio
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Yann Cornaton
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Arnfinn Hykkerud Steindal
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Luca Frediani
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
16
|
Alam MM, Beerepoot MTP, Ruud K. Channel interference in multiphoton absorption. J Chem Phys 2017; 146:244116. [DOI: 10.1063/1.4990438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Md. Mehboob Alam
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maarten T. P. Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Hršak D, Olsen JMH, Kongsted J. Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model. J Comput Chem 2017. [DOI: 10.1002/jcc.24859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalibor Hršak
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 Odense M 5230 Denmark
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 Odense M 5230 Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 Odense M 5230 Denmark
| |
Collapse
|
18
|
Hedegård ED, Bast R, Kongsted J, Olsen JMH, Jensen HJA. Relativistic Polarizable Embedding. J Chem Theory Comput 2017; 13:2870-2880. [DOI: 10.1021/acs.jctc.7b00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Radovan Bast
- High
Performance Computing Group, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Hans Jørgen Aagaard Jensen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|