1
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
2
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Bai C, Lao Z, Chen Y, Tang Y, Wei G. Pristine and Hydroxylated Fullerenes Prevent the Aggregation of Human Islet Amyloid Polypeptide and Display Different Inhibitory Mechanisms. Front Chem 2020; 8:51. [PMID: 32117877 PMCID: PMC7013002 DOI: 10.3389/fchem.2020.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Protein aggregation, involving the formation of dimers, oligomers, and fibrils, is associated with many human diseases. Type 2 diabetes is one of the common amyloidosis and linked with the aggregation of human islet amyloid polypeptide (hIAPP). A series of nanoparticles are reported to be able to interact with proteins and enhance/inhibit protein aggregation. However, the effects of C60 (a model system of hydrophobic nanoparticle) and C60(OH)8 (a hydroxylated fullerene) on hIAPP aggregation remain unknown. In this study, we investigate the influences of pristine fullerene C60 and hydroxylated C60 on the dimerization of hIAPP using molecular dynamics (MD) simulations. Extensive replica exchange molecular dynamics (REMD) simulations show that isolated hIAPP dimers adopt β-sheet structure containing the amyloid-precursor (β-hairpin). Both C60 and C60(OH)8 notably inhibit the β-sheet formation of hIAPP dimer and induce the formation of collapsed disordered coil-rich conformations. Protein—nanoparticle interaction analyses reveal that the inhibition of hIAPP aggregation by C60 is mainly via hydrophobic and aromatic-stacking interactions, while the prevention of hIAPP aggregation by C60(OH)8 is mostly through collective hydrogen bonding and aromatic-stacking interactions. Conventional MD simulations indicate that both C60 and C60(OH)8 weaken the interactions within hIAPP protofibril and disrupt the β-sheet structure. These results provide mechanistic insights into the possible inhibitory mechanism of C60 and C60(OH)8 toward hIAPP aggregation, and they are of great reference value for the screening of potent amyloid inhibitors.
Collapse
Affiliation(s)
- Cuiqin Bai
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Zenghui Lao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
5
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
6
|
Bai C, Lin D, Mo Y, Lei J, Sun Y, Xie L, Yang X, Wei G. Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects. Phys Chem Chem Phys 2019; 21:4022-4031. [DOI: 10.1039/c8cp07501h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C60(OH)24inhibits hIAPP aggregation by suppressing the fibril-prone structure and destabilizes hIAPP protofibrils by binding to the amyloid core region.
Collapse
Affiliation(s)
- Cuiqin Bai
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Dongdong Lin
- Department of Microelectronic Science and Engineering Science Faculty of Science
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Yuxiang Mo
- College of Physical Science and Technology
- Guangxi Normal University
- 15 Yucai Road
- Guilin
- China
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Luogang Xie
- College of Physics and Electronic Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 453002
- People's Republic of China
| | - Xinju Yang
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| |
Collapse
|
7
|
Collins AP, Anderson PC. Complete Coupled Binding-Folding Pathway of the Intrinsically Disordered Transcription Factor Protein Brinker Revealed by Molecular Dynamics Simulations and Markov State Modeling. Biochemistry 2018; 57:4404-4420. [PMID: 29990433 DOI: 10.1021/acs.biochem.8b00441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrinsically disordered proteins (IDPs) make up a large class of proteins that lack stable structures in solution, existing instead as dynamic conformational ensembles. To perform their biological functions, many IDPs bind to other proteins or nucleic acids. Although IDPs are unstructured in solution, when they interact with binding partners, they fold into defined three-dimensional structures via coupled binding-folding processes. Because they frequently underlie IDP function, the mechanisms of this coupled binding-folding process are of great interest. However, given the flexibility inherent to IDPs and the sparse populations of intermediate states, it is difficult to reveal binding-folding pathways at atomic resolution using experimental methods. Computer simulations are another tool for studying these pathways at high resolution. Accordingly, we have applied 40 μs of unbiased molecular dynamics simulations and Markov state modeling to map the complete binding-folding pathway of a model IDP, the 59-residue C-terminal portion of the DNA binding domain of Drosophila melanogaster transcription factor Brinker (BrkDBD). Our modeling indicates that BrkDBD binds to its cognate DNA and folds in ∼50 μs by an induced fit mechanism, acquiring most of its stable secondary and tertiary structure only after it reaches the final binding site on the DNA. The protein follows numerous pathways en route to its bound and folded conformation, occasionally becoming stuck in kinetic traps. Each binding-folding pathway involves weakly bound, increasingly folded intermediate states located at different sites on the DNA surface. These findings agree with experimental data and provide additional insight into the BrkDBD folding mechanism and kinetics.
Collapse
Affiliation(s)
- Andrew P Collins
- Physical Sciences Division , University of Washington Bothell , Bothell , Washington 98011-8246 , United States
| | - Peter C Anderson
- Physical Sciences Division , University of Washington Bothell , Bothell , Washington 98011-8246 , United States
| |
Collapse
|
8
|
Zeng X, Li ZW, Zheng X, Zhu L, Sun ZY, Lu ZY, Huang X. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys Chem Chem Phys 2018; 20:10030-10037. [PMID: 29620122 DOI: 10.1039/c8cp00522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hollow polyhedral cages hold great potential for application in nanotechnological and biomedical fields. Understanding the formation mechanism of these self-assembled structures could provide guidance for the rational design of the desired polyhedral cages. Here, by constructing kinetic network models from extensive coarse-grained molecular dynamics simulations, we elucidated the formation mechanism of the dodecahedral cage, which is formed by the self-assembly of patchy particles. We found that the dodecahedral cage is formed through increasing the aggregate size followed by structure rearrangement. Based on this mechanistic understanding, we improved the productivity of the dodecahedral cage through the rational design of the patch arrangement of patchy particles, which promotes the structural rearrangement process. Our results demonstrate that it should be a feasible strategy to achieve the rational design of the desired nanostructures via the kinetic analysis. We anticipate that this methodology could be extended to other self-assembly systems for the fabrication of functional nanomaterials.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zeng X, Zhu L, Zheng X, Cecchini M, Huang X. Harnessing complexity in molecular self-assembly using computer simulations. Phys Chem Chem Phys 2018; 20:6767-6776. [PMID: 29479585 DOI: 10.1039/c7cp06181a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In molecular self-assembly, hundreds of thousands of freely-diffusing molecules associate to form ordered and functional architectures in the absence of an actuator. This intriguing phenomenon plays a critical role in biology and has become a powerful tool for the fabrication of advanced nanomaterials. Due to the limited spatial and temporal resolutions of current experimental techniques, computer simulations offer a complementary strategy to explore self-assembly with atomic resolution. Here, we review recent computational studies focusing on both thermodynamic and kinetic aspects. As we shall see, thermodynamic approaches based on modeling and statistical mechanics offer initial guidelines to design nanostructures with modest computational effort. Computationally more intensive analyses based on molecular dynamics simulations and kinetic network models (KNMs) reach beyond it, opening the door to the rational design of self-assembly pathways. Current limitations of these methodologies are discussed. We anticipate that the synergistic use of thermodynamic and kinetic analyses based on computer simulations will provide an important contribution to the de novo design of self-assembly.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
10
|
Xi W, Vanderford EK, Hansmann UHE. Out-of-Register Aβ 42 Assemblies as Models for Neurotoxic Oligomers and Fibrils. J Chem Theory Comput 2018; 14:1099-1110. [PMID: 29357242 DOI: 10.1021/acs.jctc.7b01106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We propose a variant of the recently found S-shaped Aβ1-42-motif that is characterized by out-of-register C-terminal β-strands. We show that chains with this structure can form not only fibrils that are compatible with the NMR signals but also barrel-shaped oligomers that resemble the ones formed by the much smaller cylindrin peptides. By running long all-atom molecular dynamics simulations at physiological temperatures with an explicit solvent, we study the stability of these constructs and show that they are plausible models for neurotoxic oligomers. After analyzing the transitions between different assemblies, we suggest a mechanism for amyloid formation in Alzheimer's disease.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Elliott K Vanderford
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
11
|
Qi R, Wei G, Ma B, Nussinov R. Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example. Methods Mol Biol 2018; 1777:101-119. [PMID: 29744830 PMCID: PMC6484850 DOI: 10.1007/978-1-4939-7811-3_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein aggregation is associated with many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and type II diabetes (T2D). Understanding the molecular mechanism of protein aggregation is essential for therapy development. Molecular dynamics (MD) simulations have been shown as powerful tools to study protein aggregation. However, conventional MD simulations can hardly sample the whole conformational space of complex protein systems within acceptable simulation time as it can be easily trapped in local minimum-energy states. Many enhanced sampling methods have been developed. Among these, the replica exchange molecular dynamics (REMD) method has gained great popularity. By combining MD simulation with the Monte Carlo algorithm, the REMD method is capable of overcoming high energy-barriers easily and of sampling sufficiently the conformational space of proteins. In this chapter, we present a brief introduction to REMD method and a practical application protocol with a case study of the dimerization of the 11-25 fragment of human islet amyloid polypeptide (hIAPP(11-25)), using the GROMACS software. We also provide solutions to problems that are often encountered in practical use, and provide some useful scripts/commands from our research that can be easily adapted to other systems.
Collapse
Affiliation(s)
- Ruxi Qi
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, P.R. China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, P.R. China.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Cao Y, Jiang X, Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1-40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J Chem Theory Comput 2017; 13:5731-5744. [PMID: 29019683 DOI: 10.1021/acs.jctc.7b00803] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early oligomerization during amyloid-β (Aβ) aggregation is essential for Aβ neurotoxicity. Understanding how unstructured Aβs assemble into oligomers, especially those rich in β-sheets, is essential but remains challenging as the assembly process is too transient for experimental characterization and too slow for molecular dynamics simulations. So far, atomic simulations are limited only to studies of either oligomer structures or assembly pathways for short Aβ segments. To overcome the computational challenge, we combine in this study a hybrid-resolution model and adaptive sampling techniques to perform over 2.7 ms of simulations of formation of full-length Aβ40 dimers that are the earliest toxic oligomeric species. The Markov state model is further employed to characterize the transition pathways and associated kinetics. Our results show that for two major forms of β-sheet-rich structures reported experimentally, the corresponding assembly mechanisms are markedly different. Hairpin-containing structures are formed by direct binding of soluble Aβ in β-hairpin-like conformations. Formation of parallel, in-register structures resembling fibrils occurs ∼100-fold more slowly and involves a rapid encounter of Aβ in arbitrary conformations followed by a slow structural conversion. The structural conversion proceeds via diverse pathways but always requires transient unfolding of encounter complexes. We find that the transition kinetics could be affected differently by intra-/intermolecular interactions involving individual residues in a conformation-dependent manner. In particular, the interactions involving Aβ's N-terminal part promote the assembly into hairpin-containing structures but delay the formation of fibril-like structures, thus explaining puzzling observations reported previously regarding the roles of this region in the early assembly process.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| |
Collapse
|
13
|
Meng L, Sheong FK, Zeng X, Zhu L, Huang X. Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems. J Chem Phys 2017; 147:044112. [DOI: 10.1063/1.4995558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Luming Meng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lizhe Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|