1
|
Koshida H, Wilde M, Fukutani K. Coverage-dependent desorption kinetics of water on a well-ordered alumina thin film surface. J Chem Phys 2024; 160:034703. [PMID: 38226820 DOI: 10.1063/5.0183443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
We have developed an experimental and analytical setup for thermal desorption spectroscopy of solid water films on surfaces. We obtain the coverage-dependent desorption kinetics of water molecules from a well-defined ultra-thin alumina/NiAl(110) surface in the coverage range of 0-2 monolayers. We use a novel deconvolution technique to eliminate the pumping delay of water vapor in the vacuum system, which has previously hindered the accurate estimation of desorption kinetic parameters, such as activation energy and pre-exponential factor. The coverage-dependent Arrhenius analysis reveals that the desorption activation energy decreases with increasing coverage in the sub-monolayer range, indicating that the water-water interaction is not attractive. We also find that the pre-exponential factor for the second layer is higher than that for the sub-monolayer. We explain this difference in terms of transition state theory and propose that entropic effects play a significant role in water desorption kinetics.
Collapse
Affiliation(s)
- H Koshida
- Social Cooperation Research Departments, Frost Protection Science, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - M Wilde
- Social Cooperation Research Departments, Frost Protection Science, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - K Fukutani
- Social Cooperation Research Departments, Frost Protection Science, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
- Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
2
|
Bueno OVM, San-Miguel MA, da Silva EZ. Ethanol Oxidation Reaction Mechanism on Gold Nanowires from Density Functional Theory. Chemphyschem 2023; 24:e202200723. [PMID: 36417575 DOI: 10.1002/cphc.202200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Thin gold nanowires (NWs) are materials that could be used as support in different chemical reactions. Using density functional theory (DFT) it was shown that NWs that form linear atomic chains (LACs) are suitable for stimulating chemical reactions. To this end, the oxidation reaction of ethanol supported on the LACs of Au-NWs was investigated. Two types of LACs were used for the study, one pure and the other with an oxygen impurity. The results showed that the oxygen atom in the LAC fulfills important functions throughout the reaction pathway. Before the chemical reaction, it was observed that the LAC with impurity gains structural stability, that is, the oxygen acts as an anchor for the gold atoms in the LAC. In addition, the LAC was shown to be sensitive to disturbances in its vicinity, which modifies its nucleophilic character. During the chemical reaction, the oxidation of ethanol occurs through two different reaction paths and in two stages, both producing acetaldehyde (CH3 CHO). The different reaction pathways are a consequence of the presence of oxygen in the LAC (oxygen conditions the formation of reaction intermediates). In addition, the oxygen in the LAC also modifies the kinetic behavior in both reaction stages. It was observed that, by introducing an oxygen impurity in the LAC, the activation energy barriers decrease ∼69 % and ∼97 % in the first and second reaction stages, respectively.
Collapse
Affiliation(s)
- O V M Bueno
- Institute of Physics 'Gleb Wataghin', University of Campinas-Unicamp, 13083-859, Campinas, SP, Brazil
| | - M A San-Miguel
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas-Unicamp, P. O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - E Z da Silva
- Institute of Physics 'Gleb Wataghin', University of Campinas-Unicamp, 13083-859, Campinas, SP, Brazil
| |
Collapse
|
3
|
Rigo VA, Baletto F. Pt 38 as a promising ethanol catalyst: a first principles study. Phys Chem Chem Phys 2023; 25:4649-4655. [PMID: 36722856 DOI: 10.1039/d2cp04323h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This first-principles study predicts Pt38 nanoparticles as a catalyst for ethanol reactions. Starting from the adsorption properties, we shed light on the effectiveness of Pt-based nanoclusters as ethanol catalysts. First, the ethanol adsorption on Pt38 shows that the most stable site positions the molecule with the oxygen anchored on top of an edge, whereas CH3 is oriented towards the facet and the molecule remains in trans-symmetry. The ethanol-oxygen adsorbed on top of a facet Pt-atom offers the least stable configuration and the longer Pt-O distance (2.318 Å), while the shorter Pt-O distance (2.237 Å) is found when ethanol is on top of an edge site and the molecule is vertically oriented with Gauche symmetry. A shorter Pt-O distance correlates with higher radial breathing of the nanoparticle after ethanol adsorption. Atomic charge redistribution is calculated on all the considered systems and cases. In any event, we show that the Pt-anchor receives a charge, whilst oxygen-ethanol donates electrons. Orbital analysis shows that Pt-anchors and ethanol-oxygen atoms primarily exchange p-charge. Energy barriers associated with the ethanol bond cleavage show that the C-C bond break is slightly more favourable on Pt38 than on an extended Pt(111). In addition, we find that the cleavage of the hydroxyl O-H ethanol bond shows a higher energy barrier while the removal of an H-atom from the CH3 group is easier. These three facts indicate that the Pt38 nanoparticle enhances ethanol catalysis and hence is a good candidate for ethanol-based fuel cells.
Collapse
Affiliation(s)
- Vagner Alexandre Rigo
- Department of Natural Sciences, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, 86300-000, Brazil.
| | - Francesca Baletto
- Physics Department, University of Milan, Via Celoria 16, 20133, Italy.,Physics Department, King's College London, Strand WC2R 2LS, UK
| |
Collapse
|
4
|
Elevated electrocatalytic performance of A-site non-stoichiometric LaxNiO3 perovskites towards methanol oxidation reaction in NaOH solution. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Bartaquim EO, Bezerra RC, Bittencourt AFB, Da Silva JLF. Computational investigation of van der Waals corrections in the adsorption properties of molecules on the Cu(111) surface. Phys Chem Chem Phys 2022; 24:20294-20302. [PMID: 35979742 DOI: 10.1039/d2cp02663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a computational investigation on the role of the most common van der Waals (vdW) corrections (D2, D3, D3(BJ), TS, TS+SCS, TS+HI, and dDsC) employed in density functional theory (DFT) calculations within local and semilocal exchange-correlation functionals to improve the description of the interaction between molecular species and solid surfaces. For this, we selected several molecular model systems, namely, the adsorption of small molecules (CH3, CH4, CO, CO2, H2O, and OH) on the close-packed Cu(111) surface, which bind via chemisorption or physisorption mechanisms. As expected, we found that the addition of the vdW corrections enhances the energetic stability of the Cu bulk in the face-centered cubic structure, which contributes to increasing the magnitude of the mechanical properties (elastic constants, bulk, Young, and shear modulus). Except for the TS+SCS correction, all vdW corrections substantially increase the surface energy, while the work function changes by about 0.05 eV (largest change). However, we found substantial differences among the vdW corrections when comparing its effects on interlayer spacing relaxations. Based on bulk and surface results, we selected only the D3 and dDsC vdW corrections for the study of the adsorption properties of the selected molecules on the Cu(111) surface. Overall, the addition of these vdW corrections has a greater effect on weakly interacting systems (CH4, CO2, H2O), while the chemisorption systems (CH3, CO, OH) are less affected.
Collapse
Affiliation(s)
- Eduardo O Bartaquim
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil.
| | - Raquel C Bezerra
- Secretaria de Estado de Educação e Qualidade do Ensino (SEDUC) do Estado do Amazonas, Escola Áurea Pinheiro Braga Av. Perimentral, s/n, Lot. Cidade do Leste, Gilberto Mestrinho, 69089-340, Manaus, AM, Brazil
| | | | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Koo JJ, Kim ZH. Radical-Mediated C-C Coupling of Alcohols Induced by Plasmonic Hot Carriers. J Phys Chem Lett 2022; 13:3740-3747. [PMID: 35446033 DOI: 10.1021/acs.jpclett.2c00798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The C-C coupling reactions of aliphatic alcohols to aromatics and larger-mass compounds have large endothermicities and activation energies, calling for catalysts operating at high temperatures. Here, we demonstrate that plasmon-excited nanoparticles catalyze the C-C coupling of aliphatic alcohols at room temperature to produce polyaromatic hydrocarbons and graphene oxide. The conversion is quenched by radical and electron scavengers and by the surface passivation of metals, suggesting that the reaction proceeds through alkoxy, peroxyl, hydroxyalkyl, and alkyl radical intermediates created by the metal to molecule transfer of plasmonic hot carriers. Besides being the first realization of C-C coupling of aliphatic alcohols at room temperature, the result constitutes a rare example of an endothermic plasmon-induced reaction producing new bonds and a new method for photogenerating graphene derivatives. More importantly, the result demonstrates the facile generation of organic radicals directly from alcohols, which may be used as precursors for radical-based organic reactions.
Collapse
Affiliation(s)
- Ja-Jung Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Bezerra RC, Mendonça JPAD, Mendes PCD, Passos RR, Da Silva JLF. Role of the OH-group in the adsorption properties of methanol, ethanol, and ethylene glycol on 15-atom 3d, 4d, and 5d transition-metal clusters. Phys Chem Chem Phys 2021; 23:17553-17566. [PMID: 34369523 DOI: 10.1039/d1cp01806j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of alcohols on transition-metal (TM) substrates has received the attention of many researchers due to the applications of alcohols in several technological fields. However, our atomic-level understanding is still far from satisfactory, in particular for the interaction of alcohols with finite-size TM clusters, where new effects can arise due to the presence of quantum-size effects. In this work, we report a theoretical investigation of the adsorption properties of methanol, ethanol, and ethylene glycol on 12 different 3d, 4d, and 5d TM15 clusters based on density functional theory calculations within the semi-empirical D3 van der Waals corrections. From the correlation analysis of all the lowest- and high-energy configurations, we identified the adsorption modes of methanol, ethanol, and ethylene glycol on the TM15 clusters, in which the OH group binds to the cationic TM sites via the O-TM and H-TM interactions. Due to the relatively weak alcohol-TM15 interaction, the changes induced on the TM15 clusters are small, except for Au15 and Ru15, where the bare cluster changes its structure to a nearby minimum in the potential energy surface. The adsorption energy for the alcohol/TM15 systems is correlated to the combination of several parameters, in which the main contribution is connected with the O-TM interaction and the HOTM angles. Furthermore, the TM electronegativity is an important descriptor for the methanol and ethanol adsorption energies, while charge transfer is important for ethylene glycol.
Collapse
Affiliation(s)
- Raquel C Bezerra
- Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil
| | | | | | | | | |
Collapse
|
8
|
Felício-Sousa P, Andriani KF, Da Silva JLF. Ab initio investigation of the role of the d-states occupation on the adsorption properties of H 2, CO, CH 4 and CH 3OH on the Fe 13, Co 13, Ni 13 and Cu 13 clusters. Phys Chem Chem Phys 2021; 23:8739-8751. [PMID: 33876033 DOI: 10.1039/d0cp06091g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a theoretical investigation, based on density functional theory calculations, into the role of the occupation d-states on the adsorption properties of CH4, CO, H2 and CH3OH on 3d 13-atom transition-metal (TM13) clusters (TM = Fe, Co, Ni, Cu). Except for Cu13, a gradual increase in the occupation of the d-states, i.e., from Fe13 to Ni13, increases the magnitude of the adsorption energy almost linearly for the H2/TM13 and CO/TM13 systems, which can be explained by the enhancement of the sp-d hybridization due to the shift of the d-states towards the highest occupied molecular orbital (HOMO). For Cu13, the d-states are located well below the HOMO, which reduces the sp-d hybridization, and hence, a smaller adsorption energy is obtained. However, this picture does not hold for CH4/TM13 and CH3OH/TM13, where the adsorption energy has nearly the same value for all TM13 clusters, which can be explained by electrostatic effects such as local polarization of the molecules and nearby TM atoms, and hence, the basic features of physisorption systems. Based on the electron density difference, the polarization effects are slightly larger for systems with empty d-states.
Collapse
Affiliation(s)
- Priscilla Felício-Sousa
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | | | | |
Collapse
|
9
|
Mendes PCD, Verga LG, Da Silva JLF. Ab initio screening of Pt-based transition-metal nanoalloys using descriptors derived from the adsorption and activation of CO 2. Phys Chem Chem Phys 2021; 23:6029-6041. [PMID: 33683269 DOI: 10.1039/d1cp00570g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we report an ab initio screening, based on density functional theory calculations, of Pt-based transition-metal nanoalloys using physicochemical descriptors derived from the adsorption and activation of CO2 on 55-atom nanoclusters, namely, PtnTM55-n, with n = 0, 13, 42, 55, TM = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Au. From the adsorption on the unary and binary nanoclusters, at the chemisorption regime (bent CO2), we identified a linear correlation between the interaction energy and charge transfer from the nanoclusters towards CO2 and the bent CO2 angle; moreover, the interaction energy is enhanced for larger values of the molecular charge and angle. The alloying of Cu55, Ag55, and Au55 with Pt provides a path to change the CO2 adsorption from physisorption (linear, non-activated) to chemisorption (enhanced interaction energies, bent, activated), while the strong interaction energy of CO2 with Os55, Ru55, and Fe55 can be decreased by alloying with Pt using different structural configurations, i.e., the trends are similar for core-shell and segregated structures. Thus, based on our results and analyses, we can select different combinations of PtnTM55-n nanoalloys to yield the desired interaction strength and magnitude of the charge transfer towards the activated anionic CO2, which can help in the design of nanocatalysts for CO2 activation or different chemical reactions in which charge transfer plays a crucial role.
Collapse
Affiliation(s)
- Paulo C D Mendes
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Lucas G Verga
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| |
Collapse
|
10
|
Bezerra RC, Mendes PCD, Passos RR, Da Silva JLF. Ab initio investigation of the role of transition-metal dopants in the adsorption properties of ethylene glycol on doped Pt(100) surfaces. Phys Chem Chem Phys 2020; 22:17646-17658. [PMID: 32724948 DOI: 10.1039/d0cp01403f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethylene glycol (EG) has been considered as a promising alcohol for direct alcohol fuel cells, however, our atomistic understanding of its interaction with doped transition-metal (TM) substrates is not well established. Here, we employed density functional theory calculations within the additive van der Waals D3 correction to improve our atomistic understanding of the role of TM dopants on the adsorption properties of EG on undoped and doped Pt(100) surfaces, namely, Pt8TM1/Pt9/Pt(100) and Pt9/Pt8TM1/Pt(100), where substitutional TM dopants (Fe, Co, Ni, Ru, Rh and Pd) are located within the topmost or subsurface Pt(100) layers, respectively. Except for Pd, all the studied TM dopants showed strong energetic preference for the subsurface layer, which can be explained by the segregation energy and charge effects, and it is not affected by the EG adsorption. In the lowest energy configurations of the undoped and doped substrates, EG binds via one OH group, with the anionic O atom located close to the on-top cationic TM site and the H atom parallel to the surface and pointing towards the bridge site. However, at slightly higher energy configurations, EG adsorbs via one OH with the C-C bond almost perpendicular to the surface, or via both OH groups. As expected, the adsorption is stronger on Pt8TM1/Pt9/Pt(100) with EG (OH group) bound to the cationic TM site and a O-TM distance of about 2 Å. Furthermore, doping enhanced the adsorption energy, and hence, decreased the distance between EG and the surface. For all substrates, adsorption induces a reduction of the work function, which is larger for the adsorption of EG via two OH groups.
Collapse
Affiliation(s)
- Raquel C Bezerra
- Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Yoshiharu MUKOUYAMA
- Division of Science, College of Science and Engineering, Tokyo Denki University
| | - Keisuke IIDA
- Division of Science, College of Science and Engineering, Tokyo Denki University
| | - Terumasa KUGE
- Division of Science, College of Science and Engineering, Tokyo Denki University
| |
Collapse
|
12
|
Farkas AP, Szitás Á, Jurdi D, Palotás K, Kiss J, Kónya Z. Selective transformation of ethanol to acetaldehyde catalyzed by Au/h-BN interface prepared on Rh(111) surface. APPLIED CATALYSIS A-GENERAL 2020. [DOI: 10.1016/j.apcata.2020.117440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Peraça CST, Nagurniak GR, Orenha RP, Parreira RLT, Piotrowski MJ. A theoretical indicator of transition-metal nanoclusters applied in the carbon nanotube nucleation process: a DFT study. Dalton Trans 2020; 49:492-503. [DOI: 10.1039/c9dt04272e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The center of gravity of the occupied d-states for nanoclusters is obtained as a good indicator to reveal the best candidates to the interaction with the carbon nanotubes.
Collapse
Affiliation(s)
| | | | - Renato P. Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | |
Collapse
|
14
|
Electrocatalytic Oxidation of Small Molecule Alcohols over Pt, Pd, and Au Catalysts: The Effect of Alcohol’s Hydrogen Bond Donation Ability and Molecular Structure Properties. Catalysts 2019. [DOI: 10.3390/catal9040387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The direct alcohol fuel cell is a kind of power generation device that directly converts the chemical energy of small molecule alcohols into electric energy. In this paper, the electro-oxidation behaviors of some typical alcohols (methanol, ethanol, ethylene glycol, n-propanol, 2-propanol, and glycerol) over Pt, Pd, and Au electrodes were investigated in acidic, neutral, and alkaline media, respectively. By analyzing the activity information from a cyclic voltammetry (CV) method and some dynamic tests, several regularities were revealed in those electro-oxidation behaviors. Firstly, alkaline media is the best for the electro-oxidation of all these alcohols over Pt, Pd, and Au catalysts. Secondly, the hydrogen bond donation abilities (HBD) of different alcohols were found have a great relationship with the catalytic performance. In alkaline media, on Pt electrodes, the solute HBD is positively correlated with the ease of electrooxidation within the scope of this experiment. Contrarily, it is negatively correlated on Pd and Au electrodes. Additionally, for Pt catalysts in acidic and neutral media, the relationship becomes negative again as the HBD increases. Finally, the alcohol’s molecular structure properties were found to have a remarkably influence on the activity of different catalysts. Over the Pt electrode in alkaline media, the activation energy of methanol oxidation is 44.1 KJ/mol, and is obviously lower than the oxidation of other alcohols. Under similar conditions, the lowest activation energy was measured in the oxidation of n-propanol (14.4 KJ/mol) over the Pd electrode, and in the oxidation of glycerol (42.2 KJ/mol) over the Au electrode. Totally, among all these electrodes, Pt electrodes showed the best activities on the oxidation of C1 alcohol, Pd electrodes were more active on the oxidation of C2-3 monobasic alcohols, and Au electrodes were more active on the oxidation of polybasic alcohols.
Collapse
|
15
|
Mendes PCD, Costa-Amaral R, Gomes JF, Da Silva JLF. The influence of hydroxy groups on the adsorption of three-carbon alcohols on Ni(111), Pd(111) and Pt(111) surfaces: a density functional theory study within the D3 dispersion correction. Phys Chem Chem Phys 2019; 21:8434-8444. [PMID: 30949640 DOI: 10.1039/c9cp00752k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimentally, steric and inductive effects have been suggested as key parameters in the adsorption and reactivity of alcohols on transition-metal (TM) surfaces, however, our atomistic understanding of the behavior of alcohols in catalysis is far from satisfactory, in particular, due to the role of hydroxy groups in the adsorption properties of C3 alcohols on TM surfaces. In this study, we investigated those effects through ab initio calculations based on density functional theory employing a semilocal exchange-correlation functional within van der Waals corrections (the D3 framework) for the adsorption of C3 alcohols with different numbers and positions of OH groups, namely, propane, 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol and glycerol, on the compact Ni(111), Pd(111) and Pt(111) surfaces. As expected, we found that the adsorption energy is affected by the number of hydroxy groups with similar values for each pair of regioisomers, which clearly indicates the effect of the number of OH groups. Based on Bader charge analysis, we found an effective charge transfer from the C3 molecules to the substrates, which can explain the reduction in the work function due to adsorption. Upon adsorption, the alpha carbon to the OH group closest to the surface and the central carbon are the most positively charged atoms, which increases the lability of their bonded H atoms. In addition, the depletion of electron density between the C-H and O-H bonds closer to the surfaces corroborated their stretching, suggesting that the proximity of the adsorbates to the surfaces affects the acidity of these H atoms, as well as inductive effects within the molecules.
Collapse
Affiliation(s)
- Paulo C D Mendes
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP, Brazil.
| | | | | | | |
Collapse
|
16
|
Kakekhani A, Roling LT, Kulkarni A, Latimer AA, Abroshan H, Schumann J, AlJama H, Siahrostami S, Ismail-Beigi S, Abild-Pedersen F, Nørskov JK. Nature of Lone-Pair–Surface Bonds and Their Scaling Relations. Inorg Chem 2018; 57:7222-7238. [DOI: 10.1021/acs.inorgchem.8b00902] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arvin Kakekhani
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Luke T. Roling
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allegra A. Latimer
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hadi Abroshan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Julia Schumann
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hassan AlJama
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sohrab Ismail-Beigi
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
G. Verga L, Russell AE, Skylaris CK. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support. Phys Chem Chem Phys 2018; 20:25918-25930. [DOI: 10.1039/c8cp04798g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations reveal aspects of size and support effects for Pt nanoparticles on graphene interacting with O, CO and ethanol.
Collapse
Affiliation(s)
- L. G. Verga
- Department of Chemistry, University of Southampton
- Highfield
- UK
| | - A. E. Russell
- Department of Chemistry, University of Southampton
- Highfield
- UK
| | - C.-K. Skylaris
- Department of Chemistry, University of Southampton
- Highfield
- UK
| |
Collapse
|
18
|
Costa-Amaral R, Da Silva JLF. The adsorption of alcohols on strained Pt3Ni(111) substrates: a density functional investigation within the D3 van der Waals correction. Phys Chem Chem Phys 2018; 20:24210-24221. [DOI: 10.1039/c8cp02874e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this theoretical study, we address the effect of strain and alloying on the adsorption of methanol, ethanol and glycerol on Pt3Ni(111) surfaces.
Collapse
|