1
|
Trindade SG, Du G, Galantini L, Piculell L, Loh W, Schillén K. Structural interplay in block copolymer-bile salt complexes: from globules to ribbons. SOFT MATTER 2025; 21:3814-3828. [PMID: 40260615 DOI: 10.1039/d5sm00097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The supramolecular structures resulting from the complexation between the neutral-cationic block copolymer poly(ethylene oxide)-block-poly(2-(trimethylammonium)ethyl methacrylate iodide) (PEO114-b-PTMAEMAI95) and the bile salt sodium deoxycholate (NaDC) were investigated by dynamic light scattering, small-angle X-ray scattering, cryogenic transmission electron microscopy and proton NMR techniques. Complexes were produced using different preparation protocols: the direct mixing of the pure solutions of block copolymer and bile salt, containing their respective simple counterions, and the dispersion in water of a freeze-dried complex salt, free of simple counterions. While the direct mixing protocol produced a mixture of ordered ribbon-like aggregates and globular particles with disordered cores, the complex salt protocol yielded exclusively ordered "ribbons". The globular particles resembled classical spherical "complex coacervate core micelles" with a core of anionic deoxycholate micelles complexed with cationic PTMAEMA(+) blocks, the core radius being limited by the PTMAEMA contour length, and a shell composed of neutral PEO blocks. The drastically different ribbon morphology was found to result from (1) the organization of DC anions into hexagonally packed helices in the core and (2) the limitations on the ribbon thickness imposed by the lengths of the copolymer blocks. By varying temperature and sample treatments, it was found that the ordered ribbon morphology represents the equilibrium structure at 25 °C, while the globular morphology is favored at 50 °C. The results suggest strategies to design the morphology and tune the dimensions of aqueous block copolymer-bile salt aggregates.
Collapse
Affiliation(s)
- Suelen Gauna Trindade
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Lennart Piculell
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
2
|
Ferreira GA, Ram-On M, Talmon Y, Schillén K, Piculell L, Loh W. Complexes of Charged-Neutral Block Copolymers and Surfactants: Process-Dependent Features and Long-Term Stability of Their Aqueous Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4113-4124. [PMID: 36881854 DOI: 10.1021/acs.langmuir.2c03500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous dispersions of charged-neutral block copolymers (poly(acrylamide)-b-poly(acrylate)) complexed with an oppositely charged surfactant (dodecyltrimethylammonium) have been prepared by different approaches: the simple mixing of two solutions (MS approach) containing the block copolymer and surfactant, with their respective simple counterions, and dispersion of a freeze-dried complex salt prepared in the absence of simple counterions (CS approach). The CS particles were investigated under different conditions: dispersion of a CS in salt-free water and dispersion of a CS in a dilute salt solution, the latter condition yielding dispersions with the same composition as the MS process. Additionally, aged dispersions (up to 6 months) and dispersed complexes of the polyacrylate homopolymer and dodecyltrimethylammonium surfactant were evaluated. By employing different characterization techniques, it was seen that dispersions prepared by the MS approach display nanometric spherical particles with disordered cores, and poor colloidal stability, partially caused by the absence of surface charge (ζ-potential close to zero). Oppositely, anisometric particles were formed in CS dispersions and were large enough to sustain micellar cubic cores. The CS particles presented long-time colloidal stability, partially due to a net negative surface charge, but the stability varied with the length of the neutral block composing the corona. Our results demonstrate that all dispersed particles are metastable structures, with physicochemical properties strongly dependent on the preparation procedure, thus making these particles suitable for fundamental studies and potential applications where accurate control of their properties, including size, shape, internal structure, and stability, is desired.
Collapse
Affiliation(s)
- Guilherme A Ferreira
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, São Paulo, Brazil
| | - Maor Ram-On
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Lennart Piculell
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Bioderived, chiral and stable 1-dimensional light-responsive nanostructures: Interconversion between tubules and twisted ribbons. J Colloid Interface Sci 2022; 623:723-734. [DOI: 10.1016/j.jcis.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
4
|
Jover A, Troncoso J, di Gregorio MC, Fraga López F. Thermodynamic properties of sodium deoxycholate at the gel-sol transition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Vázquez-Tato MP, Seijas JA, Meijide F, Fraga F, de Frutos S, Miragaya J, Trillo JV, Jover A, Soto VH, Vázquez Tato J. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. Int J Mol Sci 2021; 22:6684. [PMID: 34206572 PMCID: PMC8268814 DOI: 10.3390/ijms22136684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Lipophilicity of 15 derivatives of sodium cholate, defined by the octan-1-ol/water partition coefficient (log P), has been theoretically determined by the Virtual log P method. These derivatives bear highly hydrophobic or highly hydrophilic substituents at the C3 position of the steroid nucleus, being linked to it through an amide bond. The difference between the maximum value of log P and the minimum one is enlarged to 3.5. The partition coefficient and the critical micelle concentration (cmc) are tightly related by a double-logarithm relationship (VirtuallogP=-(1.00±0.09)log(cmcmM)+(2.79±0.09)), meaning that the Gibbs free energies for the transfer of a bile anion from water to either a micelle or to octan-1-ol differ by a constant. The equation also means that cmc can be used as a measurement of lipophilicity. The demicellization of the aggregates formed by three derivatives of sodium cholate bearing bulky hydrophobic substituents has been studied by surface tension and isothermal titration calorimetry. Aggregation numbers, enthalpies, free energies, entropies, and heat capacities, ΔCP,demic, were obtained. ΔCP,demic, being positive, means that the interior of the aggregates is hydrophobic.
Collapse
Affiliation(s)
- M. Pilar Vázquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Julio A. Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Francisco Meijide
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Francisco Fraga
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain;
| | - Santiago de Frutos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Javier Miragaya
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Juan Ventura Trillo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Aida Jover
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Victor H. Soto
- Escuela de Química, Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - José Vázquez Tato
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| |
Collapse
|
6
|
Fornasier M, Pireddu R, Del Giudice A, Sinico C, Nylander T, Schillén K, Galantini L, Murgia S. Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids Surf B Biointerfaces 2021; 199:111564. [DOI: 10.1016/j.colsurfb.2021.111564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
|
7
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
8
|
Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Loh W, Masci G, Nyström B, Galantini L, Schillén K. Effect of temperature on the association behavior in aqueous mixtures of an oppositely charged amphiphilic block copolymer and bile salt. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Seyrig C, Kignelman G, Thielemans W, Le Griel P, Cowieson N, Perez J, Baccile N. Stimuli-Induced Nonequilibrium Phase Transitions in Polyelectrolyte-Surfactant Complex Coacervates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8839-8857. [PMID: 32702994 DOI: 10.1021/acs.langmuir.0c01177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte-surfactant complexes (PESCs) are important soft colloids with applications in the fields of personal care, cosmetics, pharmaceutics, and much more. If their phase diagrams have long been studied under pseudoequilibrium conditions, and often inside the micellar or vesicular regions, understanding the effect of nonequilibrium conditions, applied at phase boundaries, on the structure of PESCs generates an increasing interest. In this work we cross the micelle-vesicle and micelle-fiber phase boundaries in an isocompositional surfactant-polyelectrolyte aqueous system through a continuous and rapid variation of pH. We employ two microbial glycolipid biosurfactants in the presence of polyamines, both systems being characterized by their responsiveness to pH. We show that complex coacervates (Co) are always formed in the micellar region of both glycolipids' phase diagram and that their phase behavior drives the PESC stability and structure. However, for glycolipid forming single-wall vesicles, we observe an isostructural and isodimensional transition between complex coacervates and a multilamellar walls vesicle (MLWV) phase. For the fiber-forming glycolipid, on the contrary, the complex coacervate disassembles into free polyelectrolyte coexisting with the equilibrium fiber phase. Last but not least, this work also demonstrates the use of microbial glycolipid biosurfactants in the development of sustainable PESCs.
Collapse
Affiliation(s)
- Chloé Seyrig
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Gertrude Kignelman
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Nathan Cowieson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Javier Perez
- SWING, Synchrotron Soleil, BP 48, 91192 Gif-sur-Yvette, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| |
Collapse
|
11
|
Cautela J, Severoni E, Redondo-Gómez C, di Gregorio MC, Del Giudice A, Sennato S, Angelini R, D'Abramo M, Schillén K, Galantini L. C-12 vs C-3 substituted bile salts: An example of the effects of substituent position and orientation on the self-assembly of steroid surfactant isomers. Colloids Surf B Biointerfaces 2019; 185:110556. [PMID: 31704607 DOI: 10.1016/j.colsurfb.2019.110556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022]
Abstract
Biomolecule derivatives are transversally used in nanotechnology. Deciphering their aggregation behavior is a crucial issue for the rational design of functional materials. To this end, it is necessary to build libraries of selectively functionalized analogues and infer general rules. In this work we enrich the highly applicative oriented collection of steroid derivatives, by reporting a rare example of C-12 selectively modified bile salt. While nature often exploits such position to encode functions, it is unusual and not trivial to prepare similar analogues in the laboratory. The introduction of a tert-butyl phenyl residue at C-12 provided a molecule with a self-assembly that remarkably switched from rigid pole-like structures to twisted ribbons at a biologically relevant critical temperature (∼25 °C). The system was characterized by microscopy and spectroscopy techniques and compared with the C-3 functionalized analogue. The twisted ribbons generate samples with a gel texture and a viscoelastic response. The parallel analysis of the two systems suggested that the observed thermoresponsive self-assemblies occur at similar critical temperatures and are probably dictated by the nature of the substituent, but involve aggregates with different structures depending on position and orientation of the substituent. This study highlights the self-assembly properties of two appealing thermoresponsive systems. Moreover, it adds fundamental insights hereto missing in the investigations of the relation between self-assembly and structure of synthetic steroids, which are valuable for the rational design of steroidal amphiphiles.
Collapse
Affiliation(s)
- Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Emilia Severoni
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlos Redondo-Gómez
- Escuela de Química, Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Simona Sennato
- CNR-ISC Sede Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Roberta Angelini
- CNR-ISC Sede Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
12
|
Travaglini L, di Gregorio MC, Severoni E, D'Annibale A, Sennato S, Tardani F, Giustini M, Gubitosi M, Del Giudice A, Galantini L. Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative. J Colloid Interface Sci 2019; 554:453-462. [PMID: 31325679 DOI: 10.1016/j.jcis.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS Sodium Deoxycholate (NaDC) and Phenylalanine (Phe) are important biological hydrogelators. NaDC hydrogels form by lowering the pH or by increasing the ionic strength. Phe gels form from saturated solution by thermal induction and slow kinetics. The resulting gels hold great potential in medicine and biology as drug carriers and models for fundamental self-assembly in pathological conditions. Based on this background it was hypothesized that a Phe substituted NaDC could provide a molecule with expanded gelling ability, merging those of the precursors. EXPERIMENTS We coupled both building blocks in a zwitterionic derivative bearing a Phe residue at the C3 carbon of NaDC. The specific zwitterionic structure, the concurrent use of Ca2+ ions for the carboxyl group coordination and the pH control generate conditions for the formation of hydrogels. The hydrogels were analyzed by combining UV and circular dichroism spectroscopies, rheology, small angle X-ray scattering and atomic force microscopy. FINDINGS Hydrogel appearance occurs in conditions that are uncovered in the case of the pure Phe and NaDC: self-standing gels form instantaneously at room temperature, in the 10-12 pH range and down to concentration of 0.17 wt%. Both thixotropic and shake resistant gels can form depending on the derivative concentration. The gels show an uncommon thermal stability in the scanned range of 20-60 °C. The reported system concurrently enriches the hydrogelation properties of two relevant building blocks. We anticipate some potential applications of such gels in materials science where coordination of metal ions can be exploited for templating inorganic nanostructures.
Collapse
Affiliation(s)
- Leana Travaglini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | | | - Emilia Severoni
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Sennato
- CNR-ISC UOS Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Franco Tardani
- CNR-ISC UOS Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Marta Gubitosi
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Schillén K, Galantini L, Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Masci G, Nyström B. Block copolymers as bile salt sequestrants: intriguing structures formed in a mixture of an oppositely charged amphiphilic block copolymer and bile salt. Phys Chem Chem Phys 2019; 21:12518-12529. [PMID: 31145393 DOI: 10.1039/c9cp01744e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study the formation and characterize the structure of mixed complexes of oppositely charged block copolymers and surfactants are of great significance for practical applications, e.g., in drug carrier formulations that are based on electrostatically assisted assembly. In this context, biocompatible block copolymers and biosurfactants (like bile salts) are particularly interesting. In this work, we report on the co-assembly in dilute aqueous solution between a cationic poly(N-isopropyl acryl amide) (PNIPAM) diblock copolymer and the oppositely charged bile salt surfactant sodium deoxycholate at ambient temperature. The cryogenic transmission electron microscopy (cryo-TEM) experiments revealed the co-existence of two types of co-assembled complexes of radically different morphology and inner structure. They are formed mainly as a result of the electrostatic attraction between the positively charged copolymer blocks and bile salt anions and highlight the potential of using linear amphiphilic block copolymers as bile salt sequestrants in the treatment of bile acid malabsorption and hypercholesterolemia. The first complex of globular morphology has a coacervate core of deoxycholate anions and charged copolymer blocks surrounded by a PNIPAM corona. The second complex has an intriguing tape-like supramolecular morphology of several micrometer in length that is striped in the direction of the long axis. A model is presented in which the stretched cationic blocks of several block copolymers interact electrostatically with the bile salt molecules that are associated to form a zipper-like structure. The tape is covered on both sides by the PNIPAM chains that stabilize the overall complex in solution. In addition to cryo-TEM, the mixed system was investigated in a range of molar charge fractions at a constant copolymer concentration by static light scattering, small angle X-ray scattering, and electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Viveka Alfredsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Anna M Carnerup
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Nicolae V Pavel
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern N-0315, Oslo, Norway
| |
Collapse
|
14
|
di Gregorio MC, Travaglini L, Del Giudice A, Cautela J, Pavel NV, Galantini L. Bile Salts: Natural Surfactants and Precursors of a Broad Family of Complex Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6803-6821. [PMID: 30234994 DOI: 10.1021/acs.langmuir.8b02657] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.
Collapse
Affiliation(s)
| | - Leana Travaglini
- CNRS, ISIS UMR 7006 , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Alessandra Del Giudice
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Jacopo Cautela
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Nicolae Viorel Pavel
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Luciano Galantini
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| |
Collapse
|
15
|
di Gregorio MC, Severoni E, Travaglini L, Gubitosi M, Sennato S, Mura F, Redondo-Gómez C, Jover A, Pavel NV, Galantini L. Bile acid derivative-based catanionic mixtures: versatile tools for superficial charge modulation of supramolecular lamellae and nanotubes. Phys Chem Chem Phys 2018; 20:18957-18968. [PMID: 29972162 DOI: 10.1039/c8cp02745e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition. Electrophoretic mobility measurements prove that the composition also dictates their superficial charge, which can be tuned from negative to positive by increasing the positively charged surfactant fraction in the mixtures. The study of the catanionic aggregates was conducted by means of microscopy and spectroscopy techniques and compared to the self-assembly behaviors of the individual building blocks. This study broadens the so far small array of bile salt derivative catanionic systems, confirming their distinctive behavior in the spectrum of catanionic mixtures.
Collapse
|
16
|
Gradzielski M, Hoffmann I. Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
|
18
|
Ferreira GA, Loh W. Liquid crystalline nanoparticles formed by oppositely charged surfactant-polyelectrolyte complexes. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bayati S, Bergquist KE, Zhu K, Nyström B, Skov Pedersen J, Galantini L, Schillén K. Mixed micelles of oppositely charged poly(N-isopropylacrylamide) diblock copolymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Solmaz Bayati
- Division of Physical Chemistry, Department of Chemistry; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Karl-Erik Bergquist
- Center for Analysis and Synthesis; Department of Chemistry, Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Kaizheng Zhu
- Department of Chemistry; University of Oslo; Postboks 1033 0315 Blindern Oslo Norway
| | - Bo Nyström
- Department of Chemistry; University of Oslo; Postboks 1033 0315 Blindern Oslo Norway
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Luciano Galantini
- Department of Chemistry; “La Sapienza” University of Rome; P. le A. Moro 5 00185 Rome Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| |
Collapse
|