1
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
2
|
Knorr J, Sülzner N, Geissler B, Spies C, Grandjean A, Kutta RJ, Jung G, Nuernberger P. Ultrafast transient absorption and solvation of a super-photoacid in acetoneous environments. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2179-2192. [PMID: 36178669 DOI: 10.1007/s43630-022-00287-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.
Collapse
Affiliation(s)
- Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Bastian Geissler
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christian Spies
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Alexander Grandjean
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany. .,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
3
|
Twisted intramolecular charge transfer of nitroaromatic push-pull chromophores. Sci Rep 2022; 12:6557. [PMID: 35449231 PMCID: PMC9023442 DOI: 10.1038/s41598-022-10565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
The structural changes during the intramolecular charge transfer (ICT) of nitroaromatic chromophores, 4-dimethylamino-4′-nitrobiphenyl (DNBP) and 4-dimethylamino-4′-nitrostilbene (DNS) were investigated by femtosecond stimulated Raman spectroscopy (FSRS) with both high spectral and temporal resolutions. The kinetically resolved Raman spectra of DNBP and DNS in the locally-excited and charge-transferred states of the S1 state appear distinct, especially in the skeletal vibrational modes of biphenyl and stilbene including ν8a and νC=C. The ν8a of two phenyls and the νC=C of the central ethylene group (only for stilbene), which are strongly coupled in the planar geometries, are broken with the twist of nitrophenyl group with the ICT. Time-resolved vibrational spectroscopy measurements and the time-dependent density functional theory simulations support the ultrafast ICT dynamics of 220–480 fs with the twist of nitrophenyl group occurring in the S1 state of the nitroaromatic chromophores. While the ICT of DNBP occurs via a barrier-less pathway, the ICT coordinates of DNS are strongly coupled to several low-frequency out-of-phase deformation modes relevant to the twist of the nitrophenyl group.
Collapse
|
4
|
Jeon K, Jen M, Lee S, Jang T, Pang Y. Intramolecular Charge Transfer of 1-Aminoanthraquinone and Ultrafast Solvation Dynamics of Dimethylsulfoxide. Int J Mol Sci 2021; 22:ijms222111926. [PMID: 34769357 PMCID: PMC8584543 DOI: 10.3390/ijms222111926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The intramolecular charge transfer (ICT) of 1-aminoanthraquinone (AAQ) in the excited state strongly depends on its solvent properties, and the twisted geometry of its amino group has been recommended for the twisted ICT (TICT) state by recent theoretical works. We report the transient Raman spectra of AAQ in a dimethylsulfoxide (DMSO) solution by femtosecond stimulated Raman spectroscopy to provide clear experimental evidence for the TICT state of AAQ. The ultrafast (~110 fs) TICT dynamics of AAQ were observed from the major vibrational modes of AAQ including the νC-N + δCH and νC=O modes. The coherent oscillations in the vibrational bands of AAQ strongly coupled to the nuclear coordinate for the TICT process have been observed, which showed its anharmonic coupling to the low frequency out of the plane deformation modes. The vibrational mode of solvent DMSO, νS=O showed a decrease in intensity, especially in the hydrogen-bonded species of DMSO, which clearly shows that the solvation dynamics of DMSO, including hydrogen bonding, are crucial to understanding the reaction dynamics of AAQ with the ultrafast structural changes accompanying the TICT.
Collapse
|
5
|
Chiariello MG, Raucci U, Donati G, Rega N. Water-Mediated Excited State Proton Transfer of Pyranine-Acetate in Aqueous Solution: Vibrational Fingerprints from Ab Initio Molecular Dynamics. J Phys Chem A 2021; 125:3569-3578. [PMID: 33900071 PMCID: PMC8279639 DOI: 10.1021/acs.jpca.1c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
simulate the excited state proton transfer (ESPT)
reaction involving the pyranine photoacid and an acetate molecule
as proton acceptor, connected by a bridge water molecule. We employ
ab initio molecular dynamics combined with an hybrid quantum/molecular
mechanics (QM/MM) framework. Furthermore, a time-resolved vibrational
analysis based on the wavelet-transform allows one to identify two
low frequency vibrational modes that are fingerprints of the ESPT
event: a ring wagging and ring breathing. Their composition suggests
their key role in optimizing the structure of the proton donor–acceptor
couple and promoting the ESPT event. We find that the choice of the
QM/MM partition dramatically affects the photoinduced reactivity of
the system. The QM subspace was gradually extended including the water
molecules directly interacting with the pyranine–water–acetate
system. Indeed, the ESPT reaction takes place when the hydrogen bond
network around the reactive system is taken into account at full QM
level.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy.,Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB) Piazzale Tecchio, Largo Barsanti e Matteucci, I-80125 Napoli, Italy
| |
Collapse
|
6
|
Twisted Intramolecular Charge Transfer State of a "Push-Pull" Emitter. Int J Mol Sci 2020; 21:ijms21217999. [PMID: 33121185 PMCID: PMC7662227 DOI: 10.3390/ijms21217999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with a time constant of 1.0 ps was observed in addition to the vibrational relaxation in the ICT state of 4–7 ps. On the other hand, the energy of the ICT state of DCM becomes higher than that of the LE state in a less polar chloroform solution, where the initially-photoexcited ICT state with the LE state shows the ultrafast internal conversion to the LE state with a time constant of 300 fs. The excited-state Raman spectra of the LE and ICT state of DCM showed several major vibrational modes of DCM in the LE and ICT conformer states coexisting in the excited state. Comparing to the time-dependent density functional theory simulations and the experimental results of similar push-pull type molecules, a twisted geometry of the dimethylamino group is suggested for the structure of DCM in the S1/ICT state.
Collapse
|
7
|
Krueger TD, Boulanger SA, Zhu L, Tang L, Fang C. Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024901. [PMID: 32161777 PMCID: PMC7056454 DOI: 10.1063/1.5143441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/15/2023]
Abstract
Methylation occurs in a myriad of systems with protective and regulatory functions. 8-methoxypyrene-1,3,6-trisulfonate (MPTS), a methoxy derivative of a photoacid, serves as a model system to study effects of methylation on the excited state potential energy landscape. A suite of spectroscopic techniques including transient absorption, wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS), and fluorescence quantum yield measurements via steady-state electronic spectroscopy reveal the energy dissipation pathways of MPTS following photoexcitation. Various solvents enable a systematic characterization of the H-bonding interaction, viscosity, and dynamic solvation that influence the ensuing relaxation pathways. The formation of a charge-transfer state out of the Franck-Condon region occurs on the femtosecond-to-picosecond solvation timescale before encountering a rotational barrier. The rotational relaxation correlates with the H-bond donating strength of solvent, while the rotational time constant lengthens as solvent viscosity increases. Time-resolved excited-state FSRS, aided by quantum calculations, provides crucial structural dynamics knowledge and reveals the sulfonate groups playing a dominant role during solvation. Several prominent vibrational motions of the pyrene ring backbone help maneuver the population toward the more fluorescent state. These ultrafast correlated electronic and nuclear motions ultimately govern the fate of the photoexcited chromophore in solution. Overall, MPTS in water displays the highest probability to fluoresce, while the aprotic and more viscous dimethyl sulfoxide enhances the nonradiative pathways. These mechanistic insights may apply robustly to other photoexcited chromophores that do not undergo excited-state proton transfer or remain trapped in a broad electronic state and also provide design principles to control molecular optical responses with site-specific atomic substitution.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Sean A. Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| |
Collapse
|
8
|
Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS, Smirnov AY, Yampolsky IV, Solntsev KM, Fang C. Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. J Phys Chem B 2019; 123:3804-3821. [DOI: 10.1021/acs.jpcb.9b03201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
Tang L, Zhu L, Wang Y, Fang C. Uncovering the Hidden Excited State toward Fluorescence of an Intracellular pH Indicator. J Phys Chem Lett 2018; 9:4969-4975. [PMID: 30111103 DOI: 10.1021/acs.jpclett.8b02281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular pH (pHi) imaging is of paramount importance for life sciences. In this work, we implement the ultrafast electronic and stimulated Raman spectroscopies to unravel the fluorescence mechanism of an excitation-ratiometric pHi indicator in basic aqueous solution. After photoexcitation of the pHi indicator HPTS, a hidden charge-transfer (CT) state following the locally excited (LE) state is uncovered as an essential step prior to fluorescence and this LE → CT transition is gated by ultrafast solvation dynamics. A 835 cm-1 intermolecular vibrational mode is identified to potentially facilitate the CT-state formation on the 700 fs time scale. Dynamic correlation with the other excited-state Raman marker bands suggests that the transition between transient electronic states is aided by solvation events mostly in the molecular plane of HPTS. These vivid structural dynamics insights can enable the rational design of more efficient and bright pHi indicators in an H-bonding environment with controllable properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
10
|
Tang L, Wang Y, Zhu L, Lee C, Fang C. Correlated Molecular Structural Motions for Photoprotection after Deep-UV Irradiation. J Phys Chem Lett 2018; 9:2311-2319. [PMID: 29672054 DOI: 10.1021/acs.jpclett.8b00999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to ultraviolet (UV) light could cause photodamage to biomolecular systems and degrade optoelectronic devices. To mitigate such detrimental effects from the bottom up, we strategically select a photosensitive molecule pyranine and implement femtosecond electronic and Raman spectroscopies to elucidate its ultrafast photoprotection mechanisms in solution. Our results show that pyranine undergoes excited-state proton transfer in water, while this process is blocked in methanol regardless of excitation wavelengths (267, 400 nm). After 267 nm irradiation, the molecule relaxes from a higher lying electronic state into a lower lying singlet state with a <300 fs time constant, followed by solvation events. Transient Raman marker bands exhibit different patterns of intensity dynamics and frequency shift that elucidate the real-time interplay among conformational motions, photochemical reaction, and vibrational cooling after excitation. More energetic photons are revealed to selectively enhance certain relaxation pathways. These mechanistic findings offer new guidelines to improve the UV tolerance and stability of the engineered functional molecules in materials and life sciences.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Che Lee
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
11
|
Bhatta SR, Mondal B, Vijaykumar G, Thakur A. ICT–Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic. Inorg Chem 2017; 56:11577-11590. [DOI: 10.1021/acs.inorgchem.7b01304] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sushil Ranjan Bhatta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela-769 008, Odisha, India
| | - Bijan Mondal
- Department
of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India
| | - Gonela Vijaykumar
- Department of Chemical
Science, Indian Institute of Science Education and Research Kolkata, Mohanpur-741 246, India
| | - Arunabha Thakur
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela-769 008, Odisha, India
| |
Collapse
|
12
|
Oscar BG, Chen C, Liu W, Zhu L, Fang C. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy. J Phys Chem A 2017; 121:5428-5441. [DOI: 10.1021/acs.jpca.7b04404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Breland G. Oscar
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Cheng Chen
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Weimin Liu
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department
of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon 97331, United States
| | - Chong Fang
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
- Department
of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|