1
|
Gavilán-Arriazu EM, Hümöller JM, Pinto OA, López de Mishima BA, Leiva EPM, Oviedo OA. Fractional and integer stages of lithium ion-graphite systems: the role of electrostatic and elastic contributions. Phys Chem Chem Phys 2020; 22:16174-16183. [PMID: 32642746 DOI: 10.1039/d0cp01886d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we analyze the hot topic of integer and fractional stages of lithium-ion batteries by using Monte Carlo simulations. While fractional stages have been demonstrated through several experimental, simulation and theoretical measurements, in other experimental techniques, such as electrochemical ones, there is no evidence for them. In previous work, we have analyzed the thermodynamics and kinetics of lithium-ion intercalation using a potential based on empirical parameterization, where multiple stages (integer and fractional) were found and analyzed. The present simulations suggest that if we consider repulsive elastic interactions in addition to electrostatic ones, the Hamiltonian symmetry is broken and there is no evidence for fractional stages. The physical origin of these repulsive interactions is assigned to the increasing graphite layer separation during lithium-ion intercalation. In the light of these simulations, selected experimental data are revisited, validating the presented novel parameterization. The parametrization used here can be used for other kinds of intercalation compounds, such as those involving Na or K.
Collapse
Affiliation(s)
- E M Gavilán-Arriazu
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero (UNSE), CONICET. RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina.
| | - J M Hümöller
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - O A Pinto
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero (UNSE), CONICET. RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina.
| | - B A López de Mishima
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero (UNSE), CONICET. RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina.
| | - E P M Leiva
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - O A Oviedo
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Gavilán-Arriazu EM, Giménez RE, Pinto OA. Structural surface and thermodynamics analysis of nanoparticles with defects. Phys Chem Chem Phys 2020; 22:23148-23157. [DOI: 10.1039/d0cp03348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we analyze the surface structure and thermodynamics regarding the decoration of nanoparticles with defects, using statistical calculations and Monte Carlo simulations in a complementary way.
Collapse
Affiliation(s)
- E. M. Gavilán-Arriazu
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET)
- Universidad Nacional de Santiago de Estero
- Santiago del Estero
- Argentina
| | - Rodrigo E. Giménez
- Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro de Investigaciones en Biofisica Aplicada y Alimentos (CIBAAL) (UNSE-CONICET), Villa el Zanjón
- Argentina
| | - O. A. Pinto
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET)
- Universidad Nacional de Santiago de Estero
- Santiago del Estero
- Argentina
| |
Collapse
|