1
|
Zimmermann P, Peredkov S, Abdala PM, DeBeer S, Tromp M, Müller C, van Bokhoven JA. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213466] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Safonova OV, Guda A, Rusalev Y, Kopelent R, Smolentsev G, Teoh WY, van Bokhoven JA, Nachtegaal M. Elucidating the Oxygen Activation Mechanism on Ceria-Supported Copper-Oxo Species Using Time-Resolved X-ray Absorption Spectroscopy. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Alexander Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
| | - Yury Rusalev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
| | - René Kopelent
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Wey Yang Teoh
- School of Chemical Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
| | - Jeroen A. van Bokhoven
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | | |
Collapse
|
3
|
Rani S, Lee JH, Kim Y. 200-mm segmented cylindrical figured crystal for von Hamos x-ray spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:013101. [PMID: 32012639 DOI: 10.1063/1.5115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
A von Hamos Bragg crystal spectrometer at 1C beamline of Pohang Accelerator Laboratory for x-ray emission spectroscopy (XES) is described. Diced Si crystals of different orientations ([111], [110], [100], and [311]) are glued onto a planoconcave glass substrate having 250/500 mm radius of curvature. To enhance the spectrometer efficiency, the length of the crystal analyzer is kept 200 mm. The emission spectra of Cu foil and Fe foil and elastic scattering from Al foil are measured using the von Hamos geometry in which curved crystals disperse the x-rays. Spectrometer efficiency and energy resolution are measured at various x-ray photon energies. X-rays are incident at 6.54 keV, 9.00 keV, 9.205 keV, and 11.51 keV for Si(440), Si(444), Si(800), and Si(933) crystal analyzers, respectively. The cylindrical figured analyzer is placed near 80° with respect to the sample, which gives better energy resolution. The spectrometer efficiency of the Si(444) crystal analyzer increases by ∼2 times when the length of the analyzer is increased from 100 mm to 200 mm. Furthermore, to measure Fe Kα1, Kα2, and Kβ simultaneously, we made a mixed crystal analyzer in which alternative strips of Si[111] and Si[110] are glued onto one preshaped cylindrical substrate. The enhanced efficiency and simultaneous measurement of Kα and Kβ emission lines will give an edge over in situ and time-resolved x-ray emission spectroscopy studies. The information extracted with a high efficiency spectrometer from low intensity XES emission lines will be useful for the in situ elemental characterization in catalytic reactions.
Collapse
Affiliation(s)
- Sunita Rani
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Yongsam Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
4
|
Soldatov MA, Martini A, Bugaev AL, Pankin I, Medvedev PV, Guda AA, Aboraia AM, Podkovyrina YS, Budnyk AP, Soldatov AA, Lamberti C. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Kondrat SA, van Bokhoven JA. A Perspective on Counting Catalytic Active Sites and Rates of Reaction Using X-Ray Spectroscopy. Top Catal 2018. [DOI: 10.1007/s11244-018-1057-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Guda AA, Bugaev AL, Kopelent R, Braglia L, Soldatov AV, Nachtegaal M, Safonova OV, Smolentsev G. Fluorescence-detected XAS with sub-second time resolution reveals new details about the redox activity of Pt/CeO 2 catalyst. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:989-997. [PMID: 29979160 PMCID: PMC6038606 DOI: 10.1107/s1600577518005325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 06/02/2023]
Abstract
A setup for fluorescence-detected X-ray absorption spectroscopy (XAS) with sub-second time resolution has been developed. This technique allows chemical speciation of low-concentrated materials embedded in highly absorbing matrices, which cannot be studied using transmission XAS. Using this setup, the reactivity of 1.5 wt% Pt/CeO2 catalyst was studied with 100 ms resolution during periodic cycling in CO- and oxygen-containing atmospheres in a plug-flow reactor. Measurements were performed at the Pt L3- and Ce L3-edges. The reactivity of platinum and cerium demonstrated a strong correlation. The oxidation of the catalyst starts on the ceria support helping the oxidation of platinum nanoparticles. The new time-resolved XAS setup can be applied to various systems, capable of reproducible cycling between different states triggered by gas atmosphere, light, temperature, etc. It opens up new perspectives for mechanistic studies on automotive catalysts, selective oxidation catalysts and photocatalysts.
Collapse
Affiliation(s)
- Alexander A. Guda
- The Smart Materials Research Center, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
| | - Aram L. Bugaev
- The Smart Materials Research Center, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
- Department of Chemistry, NIS and CrisDi Interdepartmental Centres, asn INST Reference Center, University of Turin, Via P. Giuria 7, Turin 10125, Italy
| | | | - Luca Braglia
- The Smart Materials Research Center, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
- Department of Chemistry, NIS and CrisDi Interdepartmental Centres, asn INST Reference Center, University of Turin, Via P. Giuria 7, Turin 10125, Italy
| | - Alexander V. Soldatov
- The Smart Materials Research Center, Southern Federal University, Sladkova 174/28, Rostov-on-Don 344090, Russian Federation
| | | | | | | |
Collapse
|
7
|
Abe H, Aquilanti G, Boada R, Bunker B, Glatzel P, Nachtegaal M, Pascarelli S. Improving the quality of XAFS data. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:972-980. [PMID: 29979158 PMCID: PMC6038603 DOI: 10.1107/s1600577518006021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/18/2018] [Indexed: 05/26/2023]
Abstract
Following the Q2XAFS Workshop and Satellite to IUCr Congress 2017 on `Data Acquisition, Treatment, Storage - quality assurance in XAFS spectroscopy', a summary is given of the discussion on different aspects of a XAFS experiment that affect data quality. Some pertinent problems ranging from sources and minimization of noise to harmonic contamination and uncompensated monochromator glitches were addressed. Also, an overview is given of the major limitations and pitfalls of a selection of related methods, such as photon-out spectroscopies and energy-dispersive XAFS, and of increasingly common applications, namely studies at high pressure, and time-resolved investigations of catalysts in operando. Advice on how to avoid or deal with these problems and a few good practice recommendations are reported, including how to correctly report results.
Collapse
Affiliation(s)
- Hitoshi Abe
- High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | | | | | | | - Pieter Glatzel
- European Synchrotron Radiation Facility, Grenoble, France
| | | | | |
Collapse
|
8
|
Gänzler AM, Casapu M, Maurer F, Störmer H, Gerthsen D, Ferré G, Vernoux P, Bornmann B, Frahm R, Murzin V, Nachtegaal M, Votsmeier M, Grunwaldt JD. Tuning the Pt/CeO2 Interface by in Situ Variation of the Pt Particle Size. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00330] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Andreas M. Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Heike Störmer
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - Géraldine Ferré
- Université de Lyon, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne, France
| | - Philippe Vernoux
- Université de Lyon, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne, France
| | - Benjamin Bornmann
- Department of Physics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Ronald Frahm
- Department of Physics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Maarten Nachtegaal
- Paul Scherrer Institute (PSI), PSI Aarebrücke, 5232 Villigen, Switzerland
| | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| |
Collapse
|