1
|
Fang Y, Zhang Q, Zhang H, Li X, Chen W, Xu J, Shen H, Yang J, Pan C, Zhu Y, Wang J, Luo Z, Wang L, Bai X, Song F, Zhang L, Guo Y. Dual Activation of Molecular Oxygen and Surface Lattice Oxygen in Single Atom Cu
1
/TiO
2
Catalyst for CO Oxidation. Angew Chem Int Ed Engl 2022; 61:e202212273. [DOI: 10.1002/anie.202212273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Qi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Huan Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Xiaomin Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Wei Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Jue Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Huan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Jinlong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics Department of Materials Science and Engineering Chinese Academy of Sciences Beijing 100049 China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Fei Song
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
2
|
Kong F, Zhang H, Chai H, Liu B, Cao Y. Insight into the Crystal Structures and Surface Property of Manganese Oxide on CO Catalytic Oxidation Performance. Inorg Chem 2021; 60:5812-5820. [PMID: 33783206 DOI: 10.1021/acs.inorgchem.1c00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-MnO2 nanorods and flower-like γ-MnO2 microspheres were synthesized by facile and mild methods to illustrate the effect of crystal structures and surface features on catalytic performance with the help of carbon monoxide (CO) oxidation. It is revealed that the flower-like γ-MnO2 microspheres possess better catalytic oxidation performance (CO complete conversion temperature at 120 °C and long-time stability for 50 h) than α-MnO2 nanorods, which can be attributed to the obvious differences in the chemical bonds and linking modes of [MnO6] octahedra due to the different crystal structures. γ-MnO2 possesses lower Mn-O bond strength that enables γ-MnO2 to present a large amount of surface lattice oxygen and superior oxygen mobility. The disordered random intergrowth tunnel structure can adsorb effectively CO molecules, resulting in excellent catalytic performance for CO catalytic oxidation. In addition, the MnO2 catalyst probably occurred via a Mars-van Krevelen mechanism for CO oxidation. This work provides an insight into the effect of crystal structures and surface property of manganese oxide on catalytic oxidation performance, which presents help for the future design of promising catalysts with excellent catalytic performance.
Collapse
Affiliation(s)
- Fanlin Kong
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Hongyu Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Hui Chai
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Baolin Liu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| |
Collapse
|
3
|
|
4
|
Plakhova TV, Romanchuk AY, Butorin SM, Konyukhova AD, Egorov AV, Shiryaev AA, Baranchikov AE, Dorovatovskii PV, Huthwelker T, Gerber E, Bauters S, Sozarukova MM, Scheinost AC, Ivanov VK, Kalmykov SN, Kvashnina KO. Towards the surface hydroxyl species in CeO 2 nanoparticles. NANOSCALE 2019; 11:18142-18149. [PMID: 31555787 DOI: 10.1039/c9nr06032d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(iii) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.
Collapse
Affiliation(s)
- Tatiana V Plakhova
- Lomonosov Moscow State University, Department of Chemistry, Leninskije Gory 1, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang G, Wang R, Li G. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Huang W, Sun G, Cao T. Surface chemistry of group IB metals and related oxides. Chem Soc Rev 2017; 46:1977-2000. [DOI: 10.1039/c6cs00828c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic surface chemistry of IB metals are reviewed with an attempt to bridge model catalysts and powder catalysts.
Collapse
Affiliation(s)
- Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Guanghui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Tian Cao
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|