1
|
Tolbatov I, Cirri D, Tarchi M, Marzo T, Coletti C, Marrone A, Messori L, Re N, Massai L. Reactions of Arsenoplatin-1 with Protein Targets: A Combined Experimental and Theoretical Study. Inorg Chem 2022; 61:3240-3248. [PMID: 35137586 PMCID: PMC8864615 DOI: 10.1021/acs.inorgchem.1c03732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de l’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France
| | - Damiano Cirri
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Matteo Tarchi
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Tiziano Marzo
- Department
of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- CISUP
- Centre for Instrumentation Sharing (Centro per l’Integrazione
della Strumentazione Scientifica), University
of Pisa, 56126 Pisa, Italy
- University
Consortium for Research in the Chemistry of Metal ions in Biological
Systems (CIRCMSB), Via
Celso Ulpiani 27, 70126 Bari, Italy
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Luigi Messori
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Lara Massai
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Vorobyeva SN, Shekhovtsov NA, Baidina IA, Sukhikh TS, Tkachev SV, Bushuev MB, Belyaev AV. The saga of rhodium(III) nitrate complexes and their speciation in solution: An integrated experimental and quantum chemical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Miodragović Ð, Qiang W, Sattar Waxali Z, Vitnik Ž, Vitnik V, Yang Y, Farrell A, Martin M, Ren J, O’Halloran TV. Iodide Analogs of Arsenoplatins-Potential Drug Candidates for Triple Negative Breast Cancers. Molecules 2021; 26:molecules26175421. [PMID: 34500854 PMCID: PMC8434261 DOI: 10.3390/molecules26175421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Patients with triple negative breast cancers (TNBCs)—highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors—have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Wenan Qiang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Željko Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Vesna Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Yi Yang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Annie Farrell
- Department of Chemistry, University of Illinois at Urbana Champaign, 102 N. Neil St., Champaign, IL 61820, USA;
| | - Matthew Martin
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
| | - Justin Ren
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Department of Chemistry and Department of Microbiology & Molecular Genetics, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Correspondence: or ; Tel.: +1-847-491-5060; Fax: +1-847-467-1566
| |
Collapse
|
4
|
Parise A, Russo N, Marino T. The platination mechanism of RNase A by arsenoplatin: insight from the theoretical study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A detailed metalation process of the bovine pancreatic ribonuclease (RNase A) by a novel multitarget anti-cancer agent arsenoplatin-1, ([Pt(μ-NHC(CH3)O)2ClAs(OH)2]), performed at DFT level and using different models size is provided.
Collapse
Affiliation(s)
- A. Parise
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
- Université Paris-Saclay
| | - N. Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| | - T. Marino
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| |
Collapse
|
5
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of arsenoplatin complex versus water and thiocyanate: a DFT benchmark study. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02694-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSeven different density functionals, including GGAs, meta-GGAs, hybrids and range-separated hybrids, and considering Grimme’s empirical dispersion correction (M06-L, M06-2X, PBE0, B3LYP, B3LYP-D3, CAM-B3LYP, ωB97X) have been tested for their performance in the prediction of molecular structures, energies and energy barriers for a class of newly developed antitumor platinum complexes involving main group heavy elements such as arsenic. The calculated structural parameters, energies and energy barriers have been compared to the available experimental data. The results show that range-separated hybrid functionals CAM-B3LYP and ωB97X give good results in predicting both geometrical parameters and isomerization energies and barrier heights and are promising new tools for the theoretical study of novel platinum(II) arsenic compounds.
Collapse
|
6
|
Yokogawa D, Suda K. Electrostatic Potential Fitting Method Using Constrained Spatial Electron Density Expanded with Preorthogonal Natural Atomic Orbitals. J Phys Chem A 2020; 124:9665-9673. [DOI: 10.1021/acs.jpca.0c07425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kayo Suda
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Marogoa NR, Kama D, Visser HG, Schutte-Smith M. Crystal structures of chlorido-[dihy-droxybis-(1-imino-eth-oxy)]arsanido-κ 3 N, As, N']platinum(II) and of a polymorph of chlorido-[dihy-droxybis-(1-imino-prop-oxy)arsanido-κ 3 N, As, N']platinum(II). Acta Crystallogr E Crystallogr Commun 2020; 76:180-185. [PMID: 32071743 PMCID: PMC7001821 DOI: 10.1107/s2056989019016463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022]
Abstract
Each central platinum(II) atom in the crystal structures of chlorido-[dihy-droxybis-(1-imino-eth-oxy)arsanido-κ3 N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido-[dihy-droxybis-(1-imino-prop-oxy)arsanido-κ3 N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitro-gen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal-bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intra-molecular and four classical inter-molecular hydrogen-bonding inter-actions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intra-molecular and four classical inter-molecular hydrogen-bonding inter-actions) is observed in the crystal structure of (2). Various π-inter-actions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring mol-ecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-inter-actions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013 ▸). Angew. Chem. Int. Ed. 52, 10749-10752] are discussed.
Collapse
Affiliation(s)
- Nina R. Marogoa
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - D.V. Kama
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Hendrik G. Visser
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - M. Schutte-Smith
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| |
Collapse
|
8
|
Miodragović Ð, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV. Beyond Cisplatin: Combination Therapy with Arsenic Trioxide. Inorganica Chim Acta 2019; 496:119030. [PMID: 32863421 PMCID: PMC7453736 DOI: 10.1016/j.ica.2019.119030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United States
| | - Elden P Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Miodragović Đ, Merlino A, Swindell EP, Bogachkov A, Ahn RW, Abuhadba S, Ferraro G, Marzo T, Mazar AP, Messori L, O’Halloran TV. Arsenoplatin-1 Is a Dual Pharmacophore Anticancer Agent. J Am Chem Soc 2019; 141:6453-6457. [PMID: 30943017 PMCID: PMC6830503 DOI: 10.1021/jacs.8b13681] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arsenoplatins are adducts of two chemically important anticancer drugs, cisplatin and arsenic trioxide, that have a Pt(II) bond to an As(III) hydroxide center. Screens of the NCI-60 human tumor cell lines reveal that arsenoplatin-1 (AP-1), [Pt(μ-NHC(CH3)O)2ClAs(OH)2], the first representative of this novel class of anticancer agents, displays a superior activity profile relative to the parent drugs As2O3 or cisplatin in a majority of cancer cell lines tested. These activity profiles are important because the success of arsenic trioxide in blood cancers (such as APL) has not been seen in solid tumors due to the rapid clearance of arsenous acid from the body. To understand the biological chemistry of these compounds, we evaluated interactions of AP-1 with the two important classes of biomolecules-proteins and DNA. The first structural studies of AP-1 bound to model proteins reveal that platinum(II) binds the Nε of His in a manner that preserves the Pt-As bond. We find that AP-1 readily enters cells and binds to DNA with an intact Pt-As bond (Pt:As ratio of 1). At longer incubation times, however, the Pt:As ratio in DNA samples increases, suggesting that the Pt-As bond breaks and releases the As(OH)2 moiety. We conclude that arsenoplatin-1 has the potential to deliver both Pt and As species to a variety of hematological and solid cancers.
Collapse
Affiliation(s)
- Đenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United
States
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte
Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Elden P. Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Richard W. Ahn
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Sara Abuhadba
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United
States
| | - Giarita Ferraro
- Department of Chemistry “Ugo Schiff”, Università degli Studi Firenze, via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Andrew P. Mazar
- Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston,
Illinois 60208, United States
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, Università degli Studi Firenze, via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| |
Collapse
|
10
|
Prejanò M, Marino T, Russo N. On the Inhibition Mechanism of Glutathione Transferase P1 by Piperlongumine. Insight From Theory. Front Chem 2018; 6:606. [PMID: 30619815 PMCID: PMC6296316 DOI: 10.3389/fchem.2018.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Piperlongumine (PL) is an anticancer compound whose activity is related to the inhibition of human glutathione transferase of pi class (GSTP1) overexpressed in cancerous tumors and implicated in the metabolism of electrophilic compounds. In the present work, the inhibition mechanism of hydrolyzed piperlongumine (hPL) has been investigated employing QM and QM/MM levels of theory. The potential energy surfaces (PESs) underline the contributions of Tyr residue close to G site in the catalytic pocket of the enzyme. The proposed mechanism occurs through a one-step process represented by the nucleophilic addition of the glutathione thiol to electrophilic species giving rise to the simultaneous C-S and H-C bonds formation. Both the used methods give barrier heights (19.8 and 21.5 kcal mol−1 at QM/MM and QM, respectively) close to that experimentally measured for the C-S bond formations (23.8 kcal mol−1).
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| |
Collapse
|