1
|
Chen J, Onah OE, Cheng Y, Silva KJ, Choi CHW, Chen W, Xu S, Eddy L, Han Y, Yakobson BI, Zhao Y, Tour JM. Cathode-Electrolyte Interphase Engineering toward Fast-Charging LiFePO 4 Cathodes by Flash Carbon Coating. SMALL METHODS 2024:e2400680. [PMID: 39246206 DOI: 10.1002/smtd.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Indexed: 09/10/2024]
Abstract
Lithium iron phosphate (LiFePO4, LFP) batteries are widely used in electric vehicles and energy storage systems due to their excellent cycling stability, affordability and safety. However, the rate performance of LFP remains limited due to its low intrinsic electronic and ionic conductivities. In this work, an ex situ flash carbon coating method is developed to enhance the interfacial properties for fast charging. A continuous, amorphous carbon layer is achieved by rapidly decomposing the precursors and depositing carbon species in a confined space within 10 s. Simultaneously, different heteroatoms can be introduced into the surface carbon matrix, which regulates the irregular growth of cathode-electrolyte interphase (CEI) and selectively facilitates the inorganic region formation. The inorganic-rich, hybrid conductive CEI not only promotes electron and ion transport but also restricts parasitic side reactions. Consequently, LFP cathodes with fluorinated carbon coatings exhibited the highest capacity of 151 mAh g-1 at 0.2 C and 96 mAh g-1 at 10 C, indicating their excellent rate capability over commercial LFP (58 mAh g-1 at 10 C). This solvent-free, versatile surface modification is shown for other electrode materials, providing an efficient platform for electrode-electrolyte interphase engineering through a surface post-treatment.
Collapse
Affiliation(s)
- Jinhang Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Obinna E Onah
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Applied Physics Program and Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chi Hun Will Choi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science & Nanoengineering, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Applied Physics Program and Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yimo Han
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Boris I Yakobson
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yufeng Zhao
- Nanocarbon Center and the Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Corban University, 5000 Deer Park Drive SE, Salem, Oregon, 97317, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science & Nanoengineering, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Nanocarbon Center and the Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Kim J, Song S, Lee CS, Lee M, Bae J. Prominent enhancement of stability under high current density of LiFePO 4-based multidimensional nanocarbon composite as cathode for lithium-ion batteries. J Colloid Interface Sci 2023; 650:1958-1965. [PMID: 37517195 DOI: 10.1016/j.jcis.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
A facile method for synthesizing carbon-coated lithium iron phosphate (LiFePO4, LFP) and an LFP-based multidimensional nanocarbon composite to enhance the electrochemical performance of lithium-ion batteries is presented herein. Three types of cathode materials are prepared: carbon-coated LFP (LC), carbon-coated LFP with carbon nanotubes (LC@C), and carbon-coated LFP with carbon nanotubes/graphene quantum dots (LC@CG). The electrochemical performances of the LC-nanocarbon composites are compared, and both LC@C and LC@CG show improved electrochemical performance than LC. Compared with both the LC and LC@C electrodes, the LC@CG electrode exhibits the highest specific capacity of 107.1 mA h g-1 under 20C of current density, as well as higher capacities and greater stability over all measured current densities. Moreover, after 300 charge-discharge cycles, the LC@CG electrode exhibits the best stability than the LC and LC@C electrodes. This is attributable to the graphene quantum dots, which enhance the morphological stability of the LC@CG electrode during electrochemical measurements. Our findings suggest that LFP-nanocarbon composites are promising as cathode materials and highlight the potential of graphene quantum dots for improving the stability of cathodes.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Seunghyun Song
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Churl Seung Lee
- Nano Convergence Technology Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Minbaek Lee
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Joonho Bae
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
3
|
Li X, Guan G, Yu C, Cheng B, Chen X, Zhang K, Xiang J. Enhanced electrochemical performances based on ZnSnO 3 microcubes functionalized in-doped carbon nanofibers as free-standing anode materials. Dalton Trans 2023; 52:11187-11195. [PMID: 37519151 DOI: 10.1039/d3dt01642k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The binary composite, ZnSnO3 microcubes (ZSO MC) homogeneously parceled in an N-doped carbon nanofiber membrane (ZSO@CNFM), was synthesized via a mild hydrothermal, electrospinning and carbonization process as a flexible lithium-ion battery (LIB) anode material. The unique carbon-coating layer architecture of ZSO@CNFM not only plays a crucial role in alleviating the volume change of ZSO MC during lithium ion insertion/extraction processes, but also constructs a three-dimensional (3D) transport network with the help of interconnected carbon nanofibers (CNFs) to ensure the structural integrity of the material and promote the electrochemical reaction kinetics. Due to its good flexibility characteristics, the as-prepared ZSO@CNFM can be directly adopted as an anode material for LIBs without the use of copper foil, conductive carbon black and any binder. Electrochemical surveying results manifest that the optimal ZSO@CNFM electrode displays excellent cycling stability (582.6 mA h g-1 after 100 lithiation/delithiation cycles at 100 mA g-1), high coulombic efficiency (CE, 99.6% at 100th cycles), and superior rate performance (349.5 mA h g-1 at 2 A g-1). The good electrochemical properties can be ascribed to the synergistic effect of the high theoretical specific capacity of ZSO MC, favourable stability of the carbon substrate, the open structure of ZSO@CNFM and the 3D continuous highly conductive framework for rapid electron/ion transfer.
Collapse
Affiliation(s)
- Xiaoqiang Li
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
- Institute of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guangguang Guan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Chuanjin Yu
- Institute of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bingjie Cheng
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Xin Chen
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Kaiyin Zhang
- College of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China
| | - Jun Xiang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
4
|
Liu Y, Lei J, Chen Y, Liang C, Ni J. Hierarchical-Structured Fe 2O 3 Anode with Exposed (001) Facet for Enhanced Lithium Storage Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2025. [PMID: 37446541 DOI: 10.3390/nano13132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The hierarchical structure is an ideal nanostructure for conversion-type anodes with drastic volume expansion. Here, we demonstrate a tin-doping strategy for constructing Fe2O3 brushes, in which nanowires with exposed (001) facets are stacked into the hierarchical structure. Thanks to the tin-doping, the conductivity of the Sn-doped Fe2O3 has been improved greatly. Moreover, the volume changes of the Sn-doped Fe2O3 anodes can be limited to ~4% vertical expansion and ~13% horizontal expansion, thus resulting in high-rate performance and long-life stability due to the exposed (001) facet and the unique hierarchical structure. As a result, it delivers a high reversible lithium storage capacity of 580 mAh/g at a current density of 0.2C (0.2 A/g), and excellent rate performance of above 400 mAh/g even at a high current density of 2C (2 A/g) over 500 cycles, which is much higher than most of the reported transition metal oxide anodes. This doping strategy and the unique hierarchical structures bring inspiration for nanostructure design of functional materials in energy storage.
Collapse
Affiliation(s)
- Yanfei Liu
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianfei Lei
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Ying Chen
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Chenming Liang
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jing Ni
- School of Chemistry and Material Science, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
5
|
Zhang W, Du FY, Dai Y, Zheng JC. Strain engineering of Li + ion migration in olivine phosphate cathode materials LiMPO 4 (M = Mn, Fe, Co) and (LiFePO 4) n(LiMnPO 4) m superlattices. Phys Chem Chem Phys 2023; 25:6142-6152. [PMID: 36752130 DOI: 10.1039/d2cp05241e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The olivine phosphate family has been widely utilized as cathode materials for high-performance lithium-ion batteries. However, limited energy density and poor rate performance caused by low electronic and ionic conductivities are the main obstacles that need to be overcome for their widespread application. In this work, atomic simulations have been performed to study the effects of lattice strains on the Li+ ion migration energy barrier in olivine phosphates LiMPO4 (M = Mn, Fe, Co) and (LiFePO4)n(LiMnPO4)m superlattices (SLs). The (LiFePO4)n(LiMnPO4)m superlattices include three ratios of LFP/LMP, namely SL3 + 1, SL1 + 1 and SL1 + 3, each of which is along three typical (100), (010) and (001) orientations. We mainly discuss two migration paths of Li+ ions: the low-energy path A channel parallel to the b-axis and the medium-energy path B channel parallel to the c-axis. It is found that the biaxial tensile strain perpendicular to the migration path is most beneficial to reduce the migration energy barrier of Li+ ions, and the strain on the b-axis has a dominant effect on the energy barrier of Li+ ion migration. For path A, SL3 + 1 alternating periodically along the (010) orientation can obtain the lowest Li ion migration energy barrier. For path B, SL1 + 3 is the most favorable for Li+ ion migration, and there is no significant difference among the three orientations. Our work provides reference values for cathode materials and battery design.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Fu-Ye Du
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Yang Dai
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China.
| | - Jin-Cheng Zheng
- Department of Physics, Xiamen University, Xiamen 361005, China. .,Department of Physics, and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| |
Collapse
|
6
|
Tuning of composition and morphology of LiFePO 4 cathode for applications in all solid-state lithium metal batteries. Sci Rep 2022; 12:5454. [PMID: 35361808 PMCID: PMC8971424 DOI: 10.1038/s41598-022-09244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
All solid-state rechargeable lithium metal batteries (SS-LMBs) are gaining more and more importance because of their higher safety and higher energy densities in comparison to their liquid-based counterparts. In spite of this potential, their low discharge capacities and poor rate performances limit them to be used as state-of-the-art SS-LMBs. This arise due to the low intrinsic ionic and electronic transport pathways within the solid components in the cathode during the fast charge/discharge processes. Therefore, it is necessary to have a cathode with good electron conducting channels to increase the active material utilization without blocking the movement of lithium ions. Since SS-LMBs require a different morphology and composition of the cathode, we selected LiFePO4 (LFP) as a prototype and, we have systematically studied the influence of the cathode composition by varying the contents of active material LFP, conductive additives (super C65 conductive carbon black and conductive graphite), ion conducting components (PEO and LiTFSI) in order to elucidate the best ion as well as electron conduction morphology in the cathode. In addition, a comparative study on different cathode slurry preparation methods was made, wherein ball milling was found to reduce the particle size and increase the homogeneity of LFP which further aids fast Li ion transport throughout the electrode. The SEM analysis of the resulting calendered electrode shows the formation of non-porous and crack-free structures with the presence of conductive graphite throughout the electrode. As a result, the optimum LFP cathode composition with solid polymer nanocomposite electrolyte (SPNE) delivered higher initial discharge capacities of 114 mAh g-1 at 0.2C rate at 30 °C and 141 mAh g-1 at 1C rate at 70 °C. When the current rate was increased to 2C, the electrode still delivered high discharge capacity of 82 mAh g-1 even after 500 cycle, which indicates that the optimum cathode formulation is one of the important parameters in building high rate and long cycle performing SS-LMBs.
Collapse
|
7
|
Duan W, Zhao M, Mizuta Y, Li Y, Xu T, Wang F, Moriga T, Song X. Superior electrochemical performance of a novel LiFePO 4/C/CNTs composite for aqueous rechargeable lithium-ion batteries. Phys Chem Chem Phys 2020; 22:1953-1962. [PMID: 31939949 DOI: 10.1039/c9cp06042a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olivine LiFePO4 covered flocculent carbon layers wrapped with carbon nanotubes (CNTs) prepared by sol-gel method and calcination is used as the cathode material for aqueous rechargeable lithium-ion batteries (ARLBs). The phase structures and morphologies of the composite material are characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), and transmission electron microscopy (TEM). The mechanism and method through which CNTs and flocculent carbon improve the electrochemical performance are investigated in an aqueous lithium-ion battery by setting up a comparative experiment. The ARLB system is assembled using a LiFePO4/C/CNTs cathode and a zinc anode in 1 mol L-1 ZnSO4·7H2O and saturated LiNO3 aqueous solution (pH = 6), which can deliver a capacity of 158 mA h g-1 at a rate of 1C. Even at a rate of 50C, it still has a capacity of 110 mA h g-1 after 250 cycles with fantastic capacity retention (95.7%). The lithium-ion diffusion coefficient increases by an order of magnitude due to the addition of CNTs together with flocculent carbon. Four LEDs are successfully powered by the ARLBs for more than one minute to demonstrate the practical application. The excellent rate capabilities and thrilling discharge capacity at a high rate indicate that this cathode material possesses excellent electrochemical performance, and this ARLB system exhibits excellent potential as a power source for environmental applications.
Collapse
Affiliation(s)
- Wenyuan Duan
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Mingshu Zhao
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Yusuke Mizuta
- Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
| | - Yanlin Li
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Tong Xu
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Fei Wang
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Toshihiro Moriga
- Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
| | - Xiaoping Song
- School of Science, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
8
|
Graphite coated pyrolyzed filter paper as a low-cost binder-free and freestanding anode for practical lithium-ion battery application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Patience GS, Chaouki J, Latifi M, Dollé M, Chartrand P, Kasprzak W, Sun X, Sham T, Liang G, Sauriol P. Piloting melt synthesis and manufacturing processes to produce c‐lifepo
4
: preface. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jamal Chaouki
- Department of Chemical EngineeringPolytechnique MontréalMontréal QC Canada
| | - Mohammad Latifi
- Department of Chemical EngineeringPolytechnique MontréalMontréal QC Canada
| | - Mickaël Dollé
- Department of ChemistryUniversity of MontréalMontréal QC Canada
| | - Patrice Chartrand
- Department of Chemical EngineeringPolytechnique MontréalMontréal QC Canada
| | | | - Xueliang Sun
- Mechanical and Materials Engineering DepartmentWestern UniversityLondon ON Canada
| | | | | | - Pierre Sauriol
- Department of Chemical EngineeringPolytechnique MontréalMontréal QC Canada
| |
Collapse
|
10
|
Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
The electrochemical properties of nano-LiFeBO3/C as cathode materials for Li-ion batteries. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-017-3867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li X, Guan C, Hu Y, Wang J. Nanoflakes of Ni-Co LDH and Bi 2O 3 Assembled in 3D Carbon Fiber Network for High-Performance Aqueous Rechargeable Ni/Bi Battery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26008-26015. [PMID: 28722397 DOI: 10.1021/acsami.7b06696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For aqueous nickel/metal batteries, low energy density and poor rate properties are among the limiting factors for their applications, although they are the energy storage systems with high safety, high capacity, and low production cost. Here, we have developed a class of active materials consisting of porous nanoflakes of Ni-Co hydroxides and Bi2O3 that are successfully assembled on carbon substrates of carbon cloth/carbon nanofiber 3D network (CC/CNF). The combination of the porous Ni-Co hydroxides/Bi2O3 nanoflakes with carbon substrate of 3D network is able to provide a large surface area, excellent conductivity, and promote synergistic effects, as a result of the interaction between the active materials and the carbon matrix. With the porous Ni-Co hydroxides and Bi2O3 nanoflakes, the Ni/Bi battery can deliver a high capacity of ∼110 mA h g-1 at a current density of 2 A g-1. About 80% of its capacity (85 mA h g-1) can be retained when the current density increases to 20 A g-1. The full cell can also maintain 93% of the initial capacity after 1000 charge/discharge cycles, showing great potential for Ni/Bi battery.
Collapse
Affiliation(s)
- Xin Li
- Department of Materials Science and Engineering, National University of Singapore , 117574 Singapore
- Centre for Advanced 2D Materials, National University of Singapore , 117546 Singapore
| | - Cao Guan
- Department of Materials Science and Engineering, National University of Singapore , 117574 Singapore
| | - Yating Hu
- Department of Materials Science and Engineering, National University of Singapore , 117574 Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore , 117574 Singapore
| |
Collapse
|
13
|
Jiang W, Wu M, Liu F, Yang J, Feng T. Variation of carbon coatings on the electrochemical performance of LiFePO4 cathodes for lithium ionic batteries. RSC Adv 2017. [DOI: 10.1039/c7ra08062j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Asphalt-derived and glucose-derived carbon proved to be soft carbon-coating (SCC) and hard carbon-coating (HCC), and it was found that LFP/SCC showed a superior performance in capacity and rate capability than that of LFP/HCC.
Collapse
Affiliation(s)
- Weiwei Jiang
- Center for Advanced Electric Energy Technologies (CAEET)
- School of Energy Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Mengqiang Wu
- Center for Advanced Electric Energy Technologies (CAEET)
- School of Energy Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Fei Liu
- Center for Advanced Electric Energy Technologies (CAEET)
- School of Energy Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Jian Yang
- Center for Advanced Electric Energy Technologies (CAEET)
- School of Energy Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Tingting Feng
- Center for Advanced Electric Energy Technologies (CAEET)
- School of Energy Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| |
Collapse
|