1
|
Candia-Lomeli M, Delgado-Cano B, Heitz M, Avalos-Ramirez A, Arriaga S. Greenhouse gases capture applying impregnated silica with ionic liquids, deep eutectic solvents, and natural deep eutectic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33485-6. [PMID: 38683427 DOI: 10.1007/s11356-024-33485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The development of technologies to capture greenhouse gases (GHGs) like carbon dioxide (CO2) and nitrous oxide (N2O) is vital for climate change mitigation. Ionic liquids (ILs), deep eutectic solvents (DES), and natural deep eutectic solvents (NADES) are promising absorbents to abate GHGs emissions. However, their high viscosity limits the gas-liquid contact, as consequence of the mass transfer. To overcome this, their impregnation onto porous silica gel has been carried out, increasing the gas-liquid contact area. The present study analyzes the effect of size particle of silica gel impregnated with ILs, DES, and NADES over the CO2 and N2O capture at atmospheric conditions. The degree of impregnation of silica particles was determined by thermogravimetric analysis (TGA). The identification of functional groups present on the surface of silica, ILs, DES, and NADES was performed using Fourier-transform infrared spectroscopy (FTIR), and their crystalline structure was determined by X-ray diffraction (XRD). The partition coefficient of CO2 and N2O between gas and ILs, DES, and NADES was determined by a static headspace method. Results show that the degree of solvent impregnation on silica gel ranged from 36.8 to 43.0% w/w, the partition coefficient of CO2 in the impregnated silica varied from 0.005 to 0.067, and for N2O, from 0.005 to 0.032. This suggests that impregnated particles have a greater affinity for N2O compared to CO2. Using impregnated particles requires only 40% of the bulk solvent to achieve a similar GHG capture capacity compared to using bulk solvents.
Collapse
Affiliation(s)
- Mariana Candia-Lomeli
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Beatriz Delgado-Cano
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
| | - Michelle Heitz
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Antonio Avalos-Ramirez
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico.
| |
Collapse
|
2
|
Fraenza CC, Greenbaum SG, Suarez SN. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. Int J Mol Sci 2023; 24:10373. [PMID: 37373520 PMCID: PMC10299207 DOI: 10.3390/ijms241210373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.
Collapse
Affiliation(s)
- Carla C. Fraenza
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
| | - Steve G. Greenbaum
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sophia N. Suarez
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Physics Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
3
|
A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes. Molecules 2023; 28:molecules28041781. [PMID: 36838770 PMCID: PMC9966098 DOI: 10.3390/molecules28041781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Presently, the rising concerns about the fossil fuel crisis and ecological deterioration have greatly affected the world economy and hence have attracted attention to the utilization of renewable energies. Among the renewable energy being developed, supercapacitors hold great promise in broad applications such as electric vehicles. Presently, the main challenge facing supercapacitors is the amount of energy stored. This, however, does not satisfy the increasing demand for higher energy storage devices, and therefore, intensive research is being undertaken to overcome the challenges of low energy density. The purpose of this review is to report on solid polymer electrolytes (SPEs) based on polyvinyl alcohol (PVA). The review discussed the PVA as a host polymer in SPEs followed by a discussion on the influence of conducting salts. The formation of SPEs as well as the ion transport mechanism in PVA SPEs were discussed. The application and development of PVA-based polymer electrolytes on supercapacitors and other energy storage devices were elucidated. The fundamentals of electrochemical characterization for analyzing the mechanism of supercapacitor applications, such as EIS, LSV and dielectric constant, are highlighted. Similarly, thermodynamic transport models of ions and their mechanism about temperature based on Arrhenius and Vogel-Tammann-Fulcher (VTF) are analyzed. Methods for enhancing the electrochemical performance of PVA-based SPEs were reported. Likely challenges facing the current electrolytes are well discussed. Finally, research directions to overcome the present challenges in producing SPEs are proposed. Therefore, this review is expected to be source material for other researchers concerned with the development of PVA-based SPE material.
Collapse
|
4
|
Khurana S, Chandra A. Role of modified silica nanoparticles in enhancing the properties of flexible solid electrolytes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Majhi D, Dai J, Dvinskikh SV. Insights into cation-anion hydrogen bonding in mesogenic ionic liquids: an NMR study. Phys Chem Chem Phys 2022; 24:23532-23539. [PMID: 36129074 DOI: 10.1039/d2cp03188d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen-bonding interaction is studied in imidazolium-based mesogenic ionic liquids in their isotropic, smectic, and solid phases and in a nanoconfined state by proton solid-state nuclear magnetic resonance (NMR). In the smectic phase, the more basic anions form stronger hydrogen bonds. A small decrease of H-bonding in the mesophase with respect to that in the isotropic phase is associated with the presence of a layered assembly with high orientational order and limited conformational freedom. Hydrogen bond strength is not sensitive to the cation structural modification as long as the aprotic nature of the material is preserved. The strong cation-anion hydrogen bonding observed in the smectic phases provides direct support for the presence of ionic sublayers which form in ionic liquid crystals regardless of the location and alignment of the charged group in the cation, particularly irrespective of whether the charged group occupies a terminal or central position in the cation structure. A comparison of the results obtained in isotropic, liquid-crystalline, and solid states shows that in the bulk materials the dynamic state of ions ranging from high reorientational and translational freedom to partial orientation and positional order to full immobilization, respectively, has no strong impact on the cation-anion hydrogen bond strength. On the other hand, nanoconfinement of ionic liquid crystals led to hydrogen bond disruption due to competing interactions of anions with a solid interface.
Collapse
Affiliation(s)
- Debashis Majhi
- KTH Royal Institute of Technology, Stockholm, Sweden. .,Stockholm University, Stockholm, Sweden
| | - Jing Dai
- KTH Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
6
|
Damodaran K. Recent advances in NMR spectroscopy of ionic liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:1-27. [PMID: 35292132 DOI: 10.1016/j.pnmrs.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This review presents recent developments in the application of NMR spectroscopic techniques in the study of ionic liquids. NMR has been the primary tool not only for the structural characterization of ionic liquids, but also for the study of dynamics. The presence of a host of NMR active nuclei in ionic liquids permits widespread use of multinuclear NMR experiments. Chemical shifts and multinuclear coupling constants are used routinely for the structure elucidation of ionic liquids and of products formed by their covalent interactions with other materials. Also, the availability of a multitude of NMR techniques has facilitated the study of dynamical processes in them. These include the use of NOESY to study inter-ionic interactions, pulsed-field gradient techniques for probing transport properties, and relaxation measurements to elucidate rotational dynamics. This review will focus on the application of each of these techniques to investigate ionic liquids.
Collapse
Affiliation(s)
- Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
8
|
Zhao Q, Bennington P, Nealey PF, Patel SN, Evans CM. Ion Specific, Thin Film Confinement Effects on Conductivity in Polymerized Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Peter Bennington
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Shrayesh N. Patel
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | | |
Collapse
|
9
|
Bayles AV, Fisher JM, Valentine CS, Nowbahar A, Helgeson ME, Squires TM. Hydrogen Bonding Strength Determines Water Diffusivity in Polymer Ionogels. J Phys Chem B 2021; 125:5408-5419. [PMID: 33979515 DOI: 10.1021/acs.jpcb.1c01460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymeric ionogels, cross-linked gels swollen by ionic liquids (ILs), are useful vehicles for the release and storage of molecular solutes in separation, delivery, and other applications. Although rapid solute diffusion is often critical for performance, it remains challenging to predict diffusivities across multidimensional composition spaces. Recently, we showed that water (a neutral solute) diffuses through alkyl-methylimidazolium halide ILs by hopping between hydrogen bonding sites on relatively immobile cations. Here, we expand on this activated hopping mechanism in two significant ways. First, we demonstrate that water diffuses through poly(ethylene glycol)diacrylate ionogels via the same mechanism at a reduced rate. Second, we hypothesize that the activation energy barrier can be determined from relatively simple 1H NMR chemical shift measurements of the proton responsible for H-bonding. This relationship enables water's diffusivity in ionogels of this class to be predicted quantitatively, requiring only (1) the composition-dependent diffusivity and Arrhenius behavior of a single IL and (2) 1H NMR spectra of the ionogels of interest. High-throughput microfluidic Fabry-Perot interferometry measurements verify prediction accuracy across a broad formulation space (four ILs, 0 ≤ xH2O ≤ 0.7, 0 ≤ ϕPEGDA ≤ 0.66). The predictive model may expedite IL-material screening; moreover, it intimates a powerful connection between solute mobility and hydrogen bonding and suggests targets for rational design.
Collapse
Affiliation(s)
- Alexandra V Bayles
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 93106-9010, United States.,Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Julia M Fisher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 93106-9010, United States
| | - Connor S Valentine
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Arash Nowbahar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 93106-9010, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 93106-9010, United States
| | - Todd M Squires
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 93106-9010, United States
| |
Collapse
|
10
|
Abdulkadir BA, Ojur Dennis J, Al-Hadeethi Y, Shukur MFBA, Mkawi EM, Al-Harbi N, Ibnaouf KH, Aldaghri O, Usman F, Abbas Adam A. Optimization of the Electrochemical Performance of a Composite Polymer Electrolyte Based on PVA-K 2CO 3-SiO 2 Composite. Polymers (Basel) 2020; 13:polym13010092. [PMID: 33379413 PMCID: PMC7796327 DOI: 10.3390/polym13010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Composite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (K2CO3) salt, and silica (SiO2) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO2 in wt.% were incorporated into PVA-K2CO3 complex to prepare the CPEs. To study the effect of SiO2 on PVA-K2CO3 composites, the developed electrolytes were characterized for their chemical structure (FTIR), morphology (FESEM), thermal stabilities (TGA), glass transition temperature (differential scanning calorimetry (DSC)), ionic conductivity using electrochemical impedance spectroscopy (EIS), and potential window using linear sweep voltammetry (LSV). Physicochemical characterization results based on thermal and structural analysis indicated that the addition of SiO2 enhanced the amorphous region of the PVA-K2CO3 composites which enhanced the dissociation of the K2CO3 salt into K+ and CO32- and thus resulting in an increase of the ionic conduction of the electrolyte. An optimum ionic conductivity of 3.25 × 10-4 and 7.86 × 10-3 mScm-1 at ambient temperature and at 373.15 K, respectively, at a potential window of 3.35 V was observed at a composition of 15 wt.% SiO2. From FESEM micrographs, the white granules and aggregate seen on the surface of the samples confirm that SiO2 particles have been successfully dispersed into the PVA-K2CO3 matrix. The observed ionic conductivity increased linearly with increase in temperature confirming the electrolyte as temperature-dependent. Based on the observed performance, it can be concluded that the CPEs based on PVA-K2CO3-SiO2 composites could serve as promising candidate for portable and flexible next generation energy storage devices.
Collapse
Affiliation(s)
- Bashir Abubakar Abdulkadir
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
- Correspondence:
| | - John Ojur Dennis
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - E. M. Mkawi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - Nuha Al-Harbi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - K. H. Ibnaouf
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia; (K.H.I.); (O.A.)
| | - O. Aldaghri
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia; (K.H.I.); (O.A.)
| | - Fahad Usman
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - Abdullahi Abbas Adam
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| |
Collapse
|
11
|
Agafonov A, Kudryakova N, Ramenskaya L, Grishina E. The confinement and anion type effect on the physicochemical properties of ionic liquid/halloysite nanoclay ionogels. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Kinsey T, Glynn K, Cosby T, Iacob C, Sangoro J. Ion Dynamics of Monomeric Ionic Liquids Polymerized In Situ within Silica Nanopores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44325-44334. [PMID: 32886472 DOI: 10.1021/acsami.0c12381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the in situ polymerization of the vinyl cationic monomer, 1-ethyl-3-vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.0 nm diameter nanopores results in a nearly 1000-fold enhancement in the ionic conductivity compared to the material polymerized in bulk. Using insights from broadband dielectric and Raman spectroscopic techniques, we attribute these results to the role of confinement on molecular conformations, ion coordination, and subsequently the ionic conductivity in the polymerized ionic liquid. These results contribute to the understanding of the dynamics of nanoconfined molecules and show that in situ polymerization under nanoscale geometric confinement is a promising path toward enhancing ion conductivity in polymer electrolytes.
Collapse
Affiliation(s)
- Thomas Kinsey
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Kaitlin Glynn
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Tyler Cosby
- Department of Chemistry, US Naval Academy, Annapolis, Maryland 21402, United States
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm, Valcea, Romania 240050
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Karlsruhe, Germany 76128
| | - Joshua Sangoro
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| |
Collapse
|
13
|
Smith CJ, Wagle DV, Bhawawet N, Gehrke S, Hollóczki O, Pingali SV, O’Neill H, Baker GA. Combined Small-Angle Neutron Scattering, Diffusion NMR, and Molecular Dynamics Study of a Eutectogel: Illuminating the Dynamical Behavior of Glyceline Confined in Bacterial Cellulose Gels. J Phys Chem B 2020; 124:7647-7658. [DOI: 10.1021/acs.jpcb.0c04916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chip J. Smith
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Durgesh V. Wagle
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard, Fort Myers, Florida 33965, United States
| | - Nakara Bhawawet
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, Bonn 53115, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, Bonn 53115, Germany
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Hugh O’Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
14
|
Jayakody NK, Fraenza CC, Greenbaum SG, Ashby D, Dunn BS. NMR Relaxometry and Diffusometry Analysis of Dynamics in Ionic Liquids and Ionogels for Use in Lithium-Ion Batteries. J Phys Chem B 2020; 124:6843-6856. [DOI: 10.1021/acs.jpcb.0c02755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nishani Kanchana Jayakody
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Carla C. Fraenza
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Steven G. Greenbaum
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - David Ashby
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90024, United States
| | - Bruce S. Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
15
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Pan H, Geysens P, Putzeys T, Gennaro A, Yi Y, Li H, Atkin R, Binnemans K, Luo J, Wübbenhorst M. Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. J Chem Phys 2020; 152:234504. [PMID: 32571054 DOI: 10.1063/5.0011756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protic ionic liquid diethylmethylammonium methanesulfonate ([DEMA][OMs]) was analyzed in depth by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) under anhydrous conditions. Karl Fischer titration, NMR, and FT-IR spectra confirmed the high purity of [DEMA][OMs]. The melting point (37.7 °C) and the freezing point (14.0 °C) obtained by DSC agree well with the values determined by BDS (40.0 °C and 14.0 °C). The dc conductivity (σdc) above the melting/freezing point obeys the Vogel-Fulcher-Tammann (VFT) equation well, and thus, the proton conduction in [DEMA][OMs] is assumed to be dominated by the vehicle mechanism. In contrast, the σdc below the melting/freezing point can be fitted by the Arrhenius equation separately, and therefore, the proton conduction is most likely governed by the proton hopping mechanism. The non-negligible influence of previously reported low water content on the physicochemical properties of [DEMA][OMs] is found, indicating the importance of reducing water content as much as possible for the study of "intrinsic" properties of protic ionic liquids.
Collapse
Affiliation(s)
- Hailong Pan
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Pieter Geysens
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Tristan Putzeys
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Alessia Gennaro
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Yingting Yi
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Hua Li
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Jiangshui Luo
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
17
|
Marium M, Hoque M, Miran MS, Thomas ML, Kawamura I, Ueno K, Dokko K, Watanabe M. Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:148-158. [PMID: 31808690 DOI: 10.1021/acs.langmuir.9b02848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the effect of hydrophilic silica nanoparticle (AEROSIL 200) addition on the rheological and transport properties of several protic ionic liquids (PILs) consisting of protonated 1,8-diazabicyclo[5.4.0]undec-7-ene cation (DBU) was studied. Interactions between the surface silanol groups of the silica nanoparticles and the ions of these PILs affected the nature of particle aggregation and the hydrogen bonding environment, which was reflected in the nonlinear rheological behaviors and transport properties of their colloidal suspensions. In contrast to shear-thinning gels formed by colloidal suspensions of the silica nanoparticles in [DBU][TFSA] ([TFSA] = [N(SO2CF3)2]), [DBU][TfO] ([TfO] = [CF3SO3]), and [DBU][TFA] ([TFA] = [CF3CO2]), a shear-thickening stable suspension was formed in the [DBU][MSA] ([MSA] = [CH3SO3]) system. A relatively strong interaction between the silanol groups and the ions of [DBU][MSA] and the ability of this PIL to form a thicker solvation layer through hydrogen bonding were assumed to be responsible for this unique behavior. Moreover, the [DBU][MSA]-silica system showed a large enhancement in the conductivity at a certain silica concentration. This enhancement was not observed in the other PIL-silica composites that exhibited shear-thinning behavior. Even though diffusion of ions was found to be restricted in the presence of silica, a preferentially stronger interaction between [MSA] anions and the silica surface resulted in an increase in the number of charge carriers.
Collapse
Affiliation(s)
- Mayeesha Marium
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Mahfuzul Hoque
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Muhammed Shah Miran
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Morgan L Thomas
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Izuru Kawamura
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Kazuhide Ueno
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Kaoru Dokko
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| |
Collapse
|
18
|
Mattea C, Gizatullin B, Stapf S. Dynamics of ionic liquids in poly(vinyl alcohol) porous scaffold. Low field NMR study. Magn Reson Imaging 2018; 56:126-130. [PMID: 30287141 DOI: 10.1016/j.mri.2018.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022]
Abstract
In this study molecular dynamics of ionic liquids in poly(vinyl alcohol) scaffolds were investigated. The binary poly(vinyl alcohol) - ionic liquid (PVA-IL) compound was prepared from initial solutions of water, ionic liquid (IL) and poly(vinyl alcohol) (PVA) at different concentrations. Subsequently water was evaporated under open conditions, leaving the scaffold/IL system of interest. Low field nuclear magnetic resonance (NMR) relaxation and diffusion measurements, as well as 2D T1-T2 correlated NMR experiments were performed to determine specific local and translational dynamics properties at different time scales. Data suggest that during water evaporation, partial demixing of IL from the polymeric matrix leaves the remaining solvent confined in the porous structure formed by the PVA polymer. The results show that the translational diffusion, as well as the local rotational molecular dynamics is comparable to the bulk liquid state. Moreover, in partial saturation conditions, diffusion shows enhancements relative to the bulk.
Collapse
Affiliation(s)
- Carlos Mattea
- Institute of Physics FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.
| | - Bulat Gizatullin
- Institute of Physics FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- Institute of Physics FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| |
Collapse
|
19
|
Garaga MN, Dracopoulos V, Werner-Zwanziger U, Zwanziger JW, Maréchal M, Persson M, Nordstierna L, Martinelli A. A long-chain protic ionic liquid inside silica nanopores: enhanced proton mobility due to efficient self-assembly and decoupled proton transport. NANOSCALE 2018; 10:12337-12348. [PMID: 29780989 DOI: 10.1039/c8nr02031k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report enhanced protonic and ionic dynamics in an imidazole/protic ionic liquid mixture confined within the nanopores of silica particles. The ionic liquid is 1-octylimidazolium bis(trifluoromethanesulfonyl)imide ([HC8Im][TFSI]), while the silica particles are microsized and characterized by internal well connected nanopores. We demonstrate that the addition of imidazole is crucial to promote a proton motion decoupled from molecular diffusion, which occurs due to the establishment of new N-HN hydrogen bonds and fast proton exchange events in the ionic domains, as evidenced by both infrared and 1H NMR spectroscopy. An additional reason for the decoupled motion of protons is the nanosegregated structure adopted by the liquid imidazole/[HC8Im][TFSI] mixture, with segregated polar and non-polar nano-domains, as clearly shown by WAXS data. This arrangement, promoted by the length of the octyl group and thus by significant chain-chain interactions, reduces the mobility of molecules (Dmol) more than that of protons (DH), which is manifested by DH/Dmol ratios greater than three. Once included into the nanopores of hydrophobic silica microparticles, the nanostructure of the liquid mixture is preserved with slightly larger ionic domains, but effects on the non-polar ones are unclear. This results in a further enhancement of proton motion with localised paths of conduction. These findings demonstrate significant progress in the design of proton conducting materials via tailor-made molecular structures as well as by smart exploitation of confinement effects. Compared to other imidazole-based proton conducting materials that are crystalline up to 90 °C or above, the gel materials that we propose are useful for applications at room temperature, and can thus find applications in e.g. intermediate temperature proton exchange fuel cells.
Collapse
|
20
|
Smith CJ, Gehrke S, Hollóczki O, Wagle DV, Heitz MP, Baker GA. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. J Chem Phys 2018; 148:193845. [PMID: 30307178 DOI: 10.1063/1.5016337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chip J. Smith
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Muelheim an der Ruhr 45470, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
| | - Durgesh V. Wagle
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Mark P. Heitz
- Department of Chemistry and Biochemistry, The College at Brockport SUNY, Brockport, New York 14420, USA
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
21
|
Qiu X, Ueda M, Hu H, Sui Y, Zhang X, Wang L. Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33049-33058. [PMID: 28872297 DOI: 10.1021/acsami.7b07777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To improve proton conduction properties of conventional sulfonated poly(ether ether ketone) (SPEEK), poly(2,5-benzimidazole)-grafted graphene oxide (ABPBI-GO) was prepared to fabricate nanocomposite membranes, which then were further doped with phosphoric acid (PA). The ABPBI-GO was synthesized through the reaction of 3,4-diaminobenzoic acid with the carboxyl acid groups present on the GO surface. The simultaneous incorporation of ABPBI-GO and PA into SPEEK did not only improve the physicochemical performance of the membranes in terms of thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeation resistance but also relieve PA leaching from the membranes though acid-base interactions. The resulting composite membranes exhibited enhanced proton conductivities in extended humidity ranges thanks to the hygroscopic character of PA and the increased water uptake. Moreover, the unique self-ionization, self-dehydration, and nonvolatile properties of PA improved the high-temperature proton conductivities (σ) of PA-doped membranes. The PA-doped SPEEK/ABPBI-GO-3.0 delivered a σ of 7.5 mS cm-1 at 140 °C/0% RH. This value was fourfold higher than that of pristine SPEEK membranes. The PA-doped SPEEK/ABPBI-GO-3.0 based fuel cell membranes delivered power densities of 831.06 and 72.25 mW cm-2 at 80 °C/95% RH and 120 °C/0% RH, respectively. By contrast, the PA-doped SPEEK membrane generated only 655.63 and 44.58 mW cm-2 under the same testing conditions.
Collapse
Affiliation(s)
- Xiang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Mitsuru Ueda
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Huayuan Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Yuqian Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|