• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (1738)   Subscriber (50683)
For: Liu G, Wang H, Gao Y, Zhou J, Wang H. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Phys Chem Chem Phys 2018;19:2843-2849. [PMID: 28067931 DOI: 10.1039/c6cp07367k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Number Cited by Other Article(s)
1
Adekoya GJ, Adekoya OC, Muloiwa M, Sadiku ER, Kupolati WK, Hamam Y. Advances In Borophene: Synthesis, Tunable Properties, and Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2403656. [PMID: 38818675 DOI: 10.1002/smll.202403656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
2
Sharma A, Rangra VS. Hydrogenation driven ultra-low lattice thermal conductivity inβ12borophene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024;36:205704. [PMID: 38335552 DOI: 10.1088/1361-648x/ad2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
3
Tromer RM, Felix IM, Pereira LFC, da Luz MGE, Junior LAR, Galvão DS. Lattice thermal conductivity of 2D nanomaterials: a simple semi-empirical approach. Phys Chem Chem Phys 2023;25:28703-28715. [PMID: 37849351 DOI: 10.1039/d3cp02896h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
4
Dai H, Wang R. Methods for Measuring Thermal Conductivity of Two-Dimensional Materials: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:589. [PMID: 35214918 PMCID: PMC8877908 DOI: 10.3390/nano12040589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/03/2023]
5
Ou M, Wang X, Yu L, Liu C, Tao W, Ji X, Mei L. The Emergence and Evolution of Borophene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021;8:2001801. [PMID: 34194924 PMCID: PMC8224432 DOI: 10.1002/advs.202001801] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Indexed: 05/14/2023]
6
Duo Y, Xie Z, Wang L, Mahmood Abbasi N, Yang T, Li Z, Hu G, Zhang H. Borophene-based biomedical applications: Status and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213549] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
7
Hu Y, Yin Y, Li S, Zhou H, Li D, Zhang G. Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation. NANO LETTERS 2020;20:7619-7626. [PMID: 32852213 DOI: 10.1021/acs.nanolett.0c03135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
8
Liu G, Wang H, Gao Z, Li GL. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS2 monolayers. Phys Chem Chem Phys 2020;22:16796-16803. [PMID: 32662487 DOI: 10.1039/d0cp01939a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
9
Ranjan P, Lee JM, Kumar P, Vinu A. Borophene: New Sensation in Flatland. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020;32:e2000531. [PMID: 32666554 DOI: 10.1002/adma.202000531] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/29/2020] [Indexed: 05/09/2023]
10
Nguyen HTT, Hoi BD, Vu TV, Nham PV, Binh NTT. On the in-plane electronic thermal conductivity of biased nanosheet β12-borophene. Phys Chem Chem Phys 2020;22:6318-6325. [PMID: 32133468 DOI: 10.1039/c9cp06606c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Sun C, Wang XF, Zhou LP, Liu YS. The magnetism enhancement and spin transport in zigzag borophene nanoribbons edge-passivated by N atoms. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01092-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Fu B, Tang G, Li Y. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Phys Chem Chem Phys 2018;19:28517-28526. [PMID: 28902205 DOI: 10.1039/c7cp04638c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Qin G, Du A, Sun Q. A theoretical insight into a feasible strategy for the fabrication of borophane. Phys Chem Chem Phys 2018;20:16216-16221. [DOI: 10.1039/c8cp01407h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Liu S, Du H, Li G, Li L, Shi X, Liu B. Two-dimensional carbon dioxide with high stability, a negative Poisson's ratio and a huge band gap. Phys Chem Chem Phys 2018;20:20615-20621. [DOI: 10.1039/c8cp02742k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
15
Li Q, Wang H, Sun T, Zhang L. Li-decorated carbon ene–yne as a potential high-capacity hydrogen storage medium. Phys Chem Chem Phys 2018;20:24011-24018. [DOI: 10.1039/c8cp05258a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Izadi Vishkayi S, Bagheri Tagani M. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β 12-Borophene Nanoribbons. NANO-MICRO LETTERS 2017;10:14. [PMID: 30393663 PMCID: PMC6199070 DOI: 10.1007/s40820-017-0167-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/08/2017] [Indexed: 06/08/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA