1
|
Echeverri D, Calucho E, Marrugo-Ramírez J, Álvarez-Diduk R, Orozco J, Merkoçi A. Capacitive immunosensing at gold nanoparticle-decorated reduced graphene oxide electrodes fabricated by one-step laser nanostructuration. Biosens Bioelectron 2024; 252:116142. [PMID: 38401281 DOI: 10.1016/j.bios.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices. This study introduces a capacitive biosensor that leverages laser-engraved reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs). The fabrication involves laser-scribed GO-Au3+ films, yielding rGO-AuNP electrodes, seamlessly transferred onto a PET substrate via a press-stamping methodology. These electrodes have a remarkable affinity for biomolecular recognition after being functionalized with specific bioreceptors. For example, initial studies with human IgG antibodies confirm the detection capabilities of the biosensor using electrochemical capacitance spectroscopy. Furthermore, the biosensor can quantify CA-19-9 glycoprotein, a clinical cancer biomarker. The biosensor exhibits a dynamic range from 0 to 300 U mL-1, with a limit of detection of 8.9 U mL-1. Rigorous testing with known concentrations of a pretreated CA-19-9 antigen from human fluids confirmed their accuracy and reliability in detecting the glycoprotein. This study signifies notable progress in capacitive biosensing for clinical biomarkers, potentially leading to more accessible and cost-effective point-of-care solutions.
Collapse
Affiliation(s)
- Danilo Echeverri
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, 050010, Medellín, Colombia
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Jose Marrugo-Ramírez
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Ruslán Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, 050010, Medellín, Colombia.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Wikeley S, Przybylowski J, Gardiner JE, James TD, Fletcher PJ, Isaacs MA, Lozano-Sanchez P, Caffio M, Marken F. Pyrene-Appended Boronic Acids on Graphene Foam Electrodes Provide Quantum Capacitance-Based Molecular Sensors for Lactate. ACS Sens 2024; 9:1565-1574. [PMID: 38447101 PMCID: PMC10964244 DOI: 10.1021/acssensors.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Molecular recognition and sensing can be coupled to interfacial capacitance changes on graphene foam surfaces linked to double layer effects and coupled to enhanced quantum capacitance. 3D graphene foam film electrodes (Gii-Sens; thickness approximately 40 μm; roughness factor approximately 100) immersed in aqueous buffer media exhibit an order of magnitude jump in electrochemical capacitance upon adsorption of a charged molecular receptor based on pyrene-appended boronic acids (here, 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide, or abbreviated T1). This pyrene-appended pyridinium boronic acid receptor is employed here as a molecular receptor for lactate. In the presence of lactate and at pH 4.0 (after pH optimization), the electrochemical capacitance (determined by impedance spectroscopy) doubles again. Lactic acid binding is expressed with a Hillian binding constant (Klactate = 75 mol-1 dm3 and α = 0.8 in aqueous buffer, Klactate = 460 mol-1 dm3 and α = 0.8 in artificial sweat, and Klactate = 340 mol-1 dm3 and α = 0.65 in human serum). The result is a selective molecular probe response for lactic acid with LoD = 1.3, 1.4, and 1.8 mM in aqueous buffer media (pH 4.0), in artificial sweat (adjusted to pH 4.7), and in human serum (pH adjusted to 4.0), respectively. The role of the pyrene-appended boronic acid is discussed based on the double layer structure and quantum capacitance changes. In the future, this new type of molecular capacitance sensor could provide selective enzyme-free analysis without analyte consumption for a wider range of analytes and complex environments.
Collapse
Affiliation(s)
- Simon
M. Wikeley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Jakub Przybylowski
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Jordan E. Gardiner
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | | | - Mark A. Isaacs
- HarwellXPS,
Research Complex at Harwell, STFC Rutherford
Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, U.K.
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | | | - Marco Caffio
- Integrated
Graphene Ltd., Euro House, Wellgreen Place, Stirling FK8 2DJ, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
3
|
Nogueira Pedroza Dias Mello HJ, Bueno PR, Mulato M. Comparing glucose and urea enzymatic electrochemical and optical biosensors based on polyaniline thin films. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4199-4210. [PMID: 32789344 DOI: 10.1039/d0ay01018a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Analytical sensors that can detect chemical (including biological) analytes are becoming increasingly widespread within the field of analytical chemistry. More than this, in a world tending towards the 'internet-of-things', the miniaturization of such devices is becoming increasingly urgent. Accordingly, electrochemical methods that are simultaneously multiplexable and effective at a miniature scale are receiving much attention. In the present work, we compare the label-free electrochemical response of enzymatic biosensors with the response of their optical counterpart. As a proof-of-concept we compare the electrochemical impedimetric response and the first time described capacitive response of enzymatic biosensors to their optical reflectance response (measured in the visible region using a portable handset spectrophotometer). The target was the detection of glucose and urea. The chemical platform of the sensors was composed of enzymatically functionalized polyaniline thin films. Sensitivity, linearity, and the limit of detection were analyzed for both electrochemical and optical instrumental settings. We found that the impedimetric/capacitive electrochemical setup produced a response that was of a similar quality to the optical response (sensitivities of 10.7 ± 0.7, 7.4 ± 0.7 and 4.3 ± 0.2% per decade for impedimetric, capacitive and optical glucose biosensors, respectively) with a broader linear range (10-4 to 10-1 mol L-1 for both glucose and urea biosensors) and similar limit-of-detection in the range of 1 μmol L-1 within a relevant and practical diagnosis range for biomedical applications.
Collapse
Affiliation(s)
- Hugo José Nogueira Pedroza Dias Mello
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo - USP, 14040-901, Ribeirao Preto, SP, Brazil.
| | | | | |
Collapse
|
4
|
Galvanostatic synthesis of MnO2 in carbon cloth: an electrochemical impedance spectroscopy study. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Santos A, Tefashe UM, McCreery RL, Bueno PR. Introducing mesoscopic charge transfer rates into molecular electronics. Phys Chem Chem Phys 2020; 22:10828-10832. [DOI: 10.1039/d0cp01621g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been demonstrated that the concept of mesoscopic rate is able to establish a bridge between electrochemical and molecular electronic concepts.
Collapse
Affiliation(s)
- Adriano Santos
- Institute of Chemistry
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | | | | | - Paulo R. Bueno
- Institute of Chemistry
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| |
Collapse
|
6
|
Garrote BL, Fernandes FC, Cilli EM, Bueno PR. Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosens Bioelectron 2019; 127:215-220. [DOI: 10.1016/j.bios.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
|
7
|
Affiliation(s)
- Paulo R. Bueno
- Instituto de Química, Universidade Estadual Paulista, CP 355, 14800-900 Araraquara, São Paulo, Brazil
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
8
|
Hudari FF, Bessegato GG, Bedatty Fernandes FC, Zanoni MVB, Bueno PR. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Anal Chem 2018; 90:7651-7658. [DOI: 10.1021/acs.analchem.8b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Felipe F. Hudari
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Guilherme G. Bessegato
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | | | - Maria V. B. Zanoni
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Paulo R. Bueno
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Bueno PR, Bedatty Fernandes FC, Davis JJ. Quantum capacitance as a reagentless molecular sensing element. NANOSCALE 2017; 9:15362-15370. [PMID: 28972213 DOI: 10.1039/c7nr06160a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The application of nanoscale capacitance as a transduction of molecular recognition relevant to molecular diagnostics is demonstrated. The energy-related signal relates directly to the electron occupation of quantized states present in readily fabricated molecular junctions such as those presented by redox switchable self-assembled molecular monolayers, reduced graphene oxide or redox-active graphene composite films, assembled on standard metallic or micro-fabricated electrodes. Sensor design is thus based on the response of a confined and resolved electronic density of states to target binding and the associated change in interfacial chemical potential. Demonstrated herein with a number of clinically important markers, this represents a new potent and ultrasensitive molecular detection enabling energy transducer principle capable of quantifying, in a single step and reagentless manner, markers within biological fluid.
Collapse
Affiliation(s)
- Paulo R Bueno
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| | | | | |
Collapse
|
10
|
Lehr J, Weeks JR, Santos A, Feliciano GT, Nicholson MIG, Davis JJ, Bueno PR. Mapping the ionic fingerprints of molecular monolayers. Phys Chem Chem Phys 2017; 19:15098-15109. [DOI: 10.1039/c7cp01500c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular dynamics simulations support a self-assembled monolayer specific energy barrier to solution-phase ions that once surmounted, the entrapped ions support a film embedded ionic capacitance and non-faradaic relaxation (mapping through electrochemical capacitance measurements). The associated capacitance can be assigned as a particular case of general electrochemical capacitance.
Collapse
Affiliation(s)
- Joshua Lehr
- Department of Chemistry
- University of Oxford
- Oxford OX1 3QZ
- UK
| | | | - Adriano Santos
- Institute of Chemistry
- Physical Chemistry Department
- Univ. Estadual Paulista (São Paulo State University, UNESP)
- Araraquara
- Brazil
| | - Gustavo T. Feliciano
- Institute of Chemistry
- Physical Chemistry Department
- Univ. Estadual Paulista (São Paulo State University, UNESP)
- Araraquara
- Brazil
| | - Melany I. G. Nicholson
- Institute of Chemistry
- Physical Chemistry Department
- Univ. Estadual Paulista (São Paulo State University, UNESP)
- Araraquara
- Brazil
| | - Jason J. Davis
- Department of Chemistry
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Paulo R. Bueno
- Institute of Chemistry
- Physical Chemistry Department
- Univ. Estadual Paulista (São Paulo State University, UNESP)
- Araraquara
- Brazil
| |
Collapse
|