1
|
Abstract
Even after being in business for at least the last 100 years, research into the field of (heterogeneous) catalysis is still vibrant, both in academia and in industry. One of the reasons for this is that around 90% of all chemicals and materials used in everyday life are produced employing catalysis. In 2020, the global catalyst market size reached $35 billion, and it is still steadily increasing every year. Additionally, catalysts will be the driving force behind the transition toward sustainable energy. However, even after having been investigated for 100 years, we still have not reached the holy grail of developing catalysts from rational design instead of from trial-and-error. There are two main reasons for this, indicated by the two so-called "gaps" between (academic) research and actual catalysis. The first one is the "pressure gap", indicating the 13 orders of magnitude difference in pressure between the ultrahigh vacuum lab conditions and the atmospheric pressures (and higher) of industrial catalysis. The second one is the "materials gap", indicating the difference in complexity between single-crystal model catalysts of academic research and the real catalysts, consisting of metallic nanoparticles on supports, promoters, fillers, and binders. Although over the past decades significant efforts have been made in closing these gaps, many steps still have to be taken. In this Account, I will discuss the steps we have taken at Leiden University to further our fundamental understanding of heterogeneous catalysis at the (near-)atomic scale. I will focus on bridging the pressure gap, though we are also working on closing the materials gap. Over the past years, we developed state-of-the-art equipment that is able to investigate the (near-)atomic-scale structure of the catalyst surface during the chemical reaction using several surface-science-based techniques such as scanning tunneling microscopy, atomic force microscopy, optical microscopy, and X-ray-based techniques (surface X-ray diffraction, grazing-incidence small-angle X-ray scattering, and X-ray reflectivity, in collaboration with ESRF). Simultaneously with imaging the surface, we can investigate the catalyst's performance via mass spectrometry, enabling us to link changes in the catalyst structure to its activity, selectivity, or stability. Although we are currently investigating many industrially relevant catalytic systems, I will here focus the discussion on the oxidation of platinum during, for example, CO and NO oxidation, the NO reduction reaction on platinum, and the growth of graphene on liquid (molten) copper. I will show that to be able to obtain the full picture of heterogeneous catalysis, the ability to investigate the catalyst at the (near-)atomic scale during the chemical reaction is a must.
Collapse
Affiliation(s)
- Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| |
Collapse
|
2
|
Yao Z, Yang J, Liu Z, Shan B, Chen R, Wen Y, Li Y. Synergetic effect dependence on activated oxygen in the interface of NiO x-modified Pt nanoparticles for the CO oxidation from first-principles. Phys Chem Chem Phys 2021; 23:8541-8548. [PMID: 33876016 DOI: 10.1039/d1cp00149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO oxidation on NiOx-modified Pt nanoparticles (NPs) was investigated by first-principles calculations and microkinetic methods. The binding energies of O2 and CO on NiOx/Pt suggest that CO adsorption is dominant and the CO oxidation mainly follows the Mars-van Krevelen (M-vK) mechanism. It was found that the interfacial O of NiOx/Pt played a key role in the combination of adsorbed CO to O, as well as the O2 dissociation. With a lower O vacancy formation energy, NiOx/Ptedge shows about four orders higher reaction rates than NiOx/Pt(100). Microkinetic analysis suggests that the rate-determining step also depends on the active O at the interface. The calculations highlight the synergetic effect difference of NiOx selectively deposited on the different sites of Pt NPs on the CO oxidation from the atomic reaction mechanism, and throws light on the high activity of CO oxidation on partially covered NiOx/Ptedge nanoparticles.
Collapse
Affiliation(s)
- Zihang Yao
- Department of Physics and Institute of Condensed Matter Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situand operandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:153001. [PMID: 33825698 DOI: 10.1088/1361-648x/abddfd] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45413 Mülheim an der Ruhr, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
4
|
Plodinec M, Nerl HC, Girgsdies F, Schlögl R, Lunkenbein T. Insights into Chemical Dynamics and Their Impact on the Reactivity of Pt Nanoparticles during CO Oxidation by Operando TEM. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03692] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milivoj Plodinec
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Hannah C. Nerl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| |
Collapse
|
5
|
Hamadi H, Shakerzadeh E, Esrafili MD. A DFT study on the potential application of Si@C24N24 porous fullerene as an innovative and highly active catalyst for NO reduction. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Esrafili MD, Asadollahi S, Heydari S. A DFT study on NO reduction to N 2O using Al- and P-doped hexagonal boron nitride nanosheets. J Mol Graph Model 2019; 89:41-49. [PMID: 30870648 DOI: 10.1016/j.jmgm.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
Using the dispersion-corrected DFT calculations, the catalytic reduction of NO molecules to N2O is investigated over Al- and P-doped hexagonal boron nitride nanosheets (h-BNNS). It is found that NO dissociation over both these surfaces needs a very large energy barrier, which indicates it cannot proceed at normal temperature. In contrast, the results show that NO molecules can be easily reduced into N2O via a dimer mechanism. The obtained activation energies reveal that the catalytic activity of Al-doped h-BNNS is better than that of P-doped one, mainly due to the moderate coadsorption energies of NO molecules over this surface.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
| | - Soheila Asadollahi
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Safa Heydari
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
7
|
Altantzis T, Lobato I, De Backer A, Béché A, Zhang Y, Basak S, Porcu M, Xu Q, Sánchez-Iglesias A, Liz-Marzán LM, Van Tendeloo G, Van Aert S, Bals S. Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment. NANO LETTERS 2019; 19:477-481. [PMID: 30540912 PMCID: PMC6437648 DOI: 10.1021/acs.nanolett.8b04303] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation-reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.
Collapse
Affiliation(s)
- Thomas Altantzis
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ivan Lobato
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Annick De Backer
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Armand Béché
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Yang Zhang
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Shibabrata Basak
- DENSsolutions, Informaticalaan 12, Delft, 2628ZD, The Netherlands
| | - Mauro Porcu
- DENSsolutions, Informaticalaan 12, Delft, 2628ZD, The Netherlands
| | - Qiang Xu
- DENSsolutions, Informaticalaan 12, Delft, 2628ZD, The Netherlands
| | - Ana Sánchez-Iglesias
- Bionanoplasmonics
Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia - San Sebastian, Spain
| | - Luis M. Liz-Marzán
- Bionanoplasmonics
Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia - San Sebastian, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gustaaf Van Tendeloo
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sandra Van Aert
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- E-mail:
| |
Collapse
|
8
|
Esrafili MD. Exploring Reaction Mechanisms for the Reduction of NO Molecules over Al‐ or Si‐Anchored Graphene Oxide: A Metal‐Free Approach. ChemistrySelect 2018. [DOI: 10.1002/slct.201802579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical ChemistryDepartment of Chemistry, University of Maragheh, Maragheh Iran
| |
Collapse
|
9
|
Esrafili MD. NO reduction by CO molecule over Si-doped boron nitride nanosheet: A dispersion-corrected DFT study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Metal‐Free Reduction of NO over a Fullerene‐like Boron Nitride Nanocluster: A Mechanistic Study by DFT Calculations. ChemistrySelect 2018. [DOI: 10.1002/slct.201702812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
van Spronsen MA, Frenken JWM, Groot IMN. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem Soc Rev 2017; 46:4347-4374. [DOI: 10.1039/c7cs00045f] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Application of surface-science techniques, such as XPS, SXRD, STM, and IR spectroscopy under catalytic reactions conditions yield new structural and chemical information. Recent experiments focusing on CO oxidation over Pt and Pd model catalysts were reviewed.
Collapse
Affiliation(s)
| | - Joost W. M. Frenken
- Advanced Research Center for Nanolithography
- 1090 BA Amsterdam
- The Netherlands
| | - Irene M. N. Groot
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|