1
|
Alva E, George A, Brancaleon L, Marucho M. Hydrodynamic and Polyelectrolyte Properties of Actin Filaments: Theory and Experiments. Polymers (Basel) 2022; 14:polym14122438. [PMID: 35746014 PMCID: PMC9230757 DOI: 10.3390/polym14122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Actin filament’s polyelectrolyte and hydrodynamic properties, their interactions with the biological environment, and external force fields play an essential role in their biological activities in eukaryotic cellular processes. In this article, we introduce a unique approach that combines dynamics and electrophoresis light-scattering experiments, an extended semiflexible worm-like chain model, and an asymmetric polymer length distribution theory to characterize the polyelectrolyte and hydrodynamic properties of actin filaments in aqueous electrolyte solutions. A fitting approach was used to optimize the theories and filament models for hydrodynamic conditions. We used the same sample and experimental conditions and considered several g-actin and polymerization buffers to elucidate the impact of their chemical composition, reducing agents, pH values, and ionic strengths on the filament translational diffusion coefficient, electrophoretic mobility, structure factor, asymmetric length distribution, effective filament diameter, electric charge, zeta potential, and semiflexibility. Compared to those values obtained from molecular structure models, our results revealed a lower value of the effective G-actin charge and a more significant value of the effective filament diameter due to the formation of the double layer of the electrolyte surrounding the filaments. Contrary to the data usually reported from electron micrographs, the lower values of our results for the persistence length and average contour filament length agree with the significant difference in the association rates at the filament ends that shift to sub-micro lengths, which is the maximum of the length distribution.
Collapse
|
2
|
Hunley C, Marucho M. Electrical Propagation of Condensed and Diffuse Ions Along Actin Filaments. J Comput Neurosci 2022; 50:91-107. [PMID: 34392446 PMCID: PMC8818025 DOI: 10.1007/s10827-021-00795-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023]
Abstract
In this article, we elucidate the roles of divalent ion condensation and highly polarized immobile water molecules on the propagation of ionic calcium waves along actin filaments. We introduced a novel electrical triple layer model and used a non-linear Debye-Huckel theory with a non-linear, dissipative, electrical transmission line model to characterize the physicochemical properties of each monomer in the filament. This characterization is carried out in terms of an electric circuit model containing monomeric flow resistances and ionic capacitances in both the condensed and diffuse layers. We considered resting and excited states of a neuron using representative mono and divalent electrolyte mixtures. Additionally, we used 0.05V and 0.15V voltage inputs to study ionic waves along actin filaments in voltage clamp experiments. Our results reveal that the physicochemical properties characterizing the condensed and diffuse layers lead to different electrical conductive mediums depending on the ionic species and the neuron state. This region specific propagation mechanism provides a more realistic avenue of delivery by way of cytoskeleton filaments for larger charged cationic species. A new direct path for transporting divalent ions might be crucial for many electrical processes found in localized neuron elements such as at mitochondria and dendritic spines.
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, 78249-5003, TX, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, 78249-5003, TX, USA.
| |
Collapse
|
3
|
Li Z, Wan J, Zhang Y, Dang C, Pan F, Fu J. Influences of petroleum hydrocarbon pyrene on the formation, stability and antibacterial activity of natural Au nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148813. [PMID: 34246134 DOI: 10.1016/j.scitotenv.2021.148813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The effect of pyrene on the formation of naturally Au nanoparticles (AuNPs) in the presence of humic acid (HA) under UV irradiation is described. TEM, EDS, FTIR and XPS were carried out to prove the formation of AuNPs and display their morphologies and formation mechanism. There are little differences between size, morphology and function groups of surface coated materials of AuNPs formed with and without pyrene. With the presence of HA, pyrene showed an inhibiting effect on the reduction of Au ion via competition for O2•-, thereby decreasing the production of AuNPs. However, AuNPs formed by HA-pyrene showed higher stability than AuNPs formed by HA with the sedimentation rates of 4.13% and 13.68% respectively after 30-d standing. As for the antibacterial activities against Staphylococcus aureus and Escherichia coli, AuNPs formed by HA-pyrene were more toxic than AuNPs formed by HA. Meanwhile, changes of environmental factors such as temperature, pH and ionic strength exhibited similar influence trend on the formation of AuNPs in the presence and absence of pyrene. The results suggest that the typical petroleum hydrocarbon pyrene contained in spilled oil could influence the formation, fate and ecotoxicity of AuNPs.
Collapse
Affiliation(s)
- Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China.
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Gil V, Porozhnyy M, Rybalkina O, Sabbatovskiy K, Nikonenko V. Modification of a heterogeneous cation-exchange membrane by Ti-Si based particles to enhance electroconvection and mitigate scaling during electrodialysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Stepankova H, Swiatkowski M, Kruszynski R, Svec P, Michalkova H, Smolikova V, Ridoskova A, Splichal Z, Michalek P, Richtera L, Kopel P, Adam V, Heger Z, Rex S. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int J Nanomedicine 2021; 16:4431-4449. [PMID: 34234435 PMCID: PMC8257049 DOI: 10.2147/ijn.s304902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcin Swiatkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Vendula Smolikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Mendel University in Brno, Brno, Czechia
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
6
|
|
7
|
Porozhnyy M, Shkirskaya S, Butylskii D, Dotsenko V, Safronova E, Yaroslavtsev A, Deabate S, Huguet P, Nikonenko V. Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Weppelmann TA, Jeong KC, Ali A. Characterization of the Vibriocidal Activity of Chitosan Microparticles: A Potential Therapeutic Agent for Emerging Multidrug-Resistant Cholera Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47278-47288. [PMID: 32990431 DOI: 10.1021/acsami.0c14313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to increasing reports of multidrug-resistant (MDR) Vibrio cholerae O1, the goal of this study was to characterize the in vitro antimicrobial activity of chitosan microparticles (CMs) to evaluate their potential as a novel therapeutic agent for cholera. We examined the antimicrobial activity of CMs against toxigenic V. cholerae O1 using direct enumeration, microscopy, and fluorescence microplate assays. Bacterial viability kinetics were measured with different concentrations of CMs, solution pH, and salt content using a live/dead staining technique. Growth inhibition of CM-exposed V. cholerae strains was conducted using a redox-sensitive stain and compared between wild-type and isogenic outer membrane (OM) mutants. CM concentrations above 0.1 wt % were sufficient to kill V. cholerae O1 suspensions with approximately 108 CFU/mL within 3 h. The nonviable cells demonstrated increased OM permeability that corresponded to gross morphological changes observed through scanning electron microscopy. CMs exhibited dose-dependent bactericidal activity that increased predictably at lower pH and decreased with salt addition. V. cholerae O1 strains lacking O-antigen were twice as susceptible to growth inhibition by CMs, whereas those with glycine modification to lipid A were ten times more resistant. We propose that CMs exert vibriocidal activity via electrostatic surface interactions between their positively charged amine groups and the negatively charged Gram-negative bacterial OM, resulting in disruption, increased permeability, decreased redox metabolism, and subsequent loss of cellular viability. Further research should be conducted in vivo to evaluate the efficacy of CMs as luminal agents to treat infections caused by MDR, toxigenic V. cholerae and other diarrheal pathogens.
Collapse
Affiliation(s)
- Thomas A Weppelmann
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
- Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Taylor Z, Marucho M. The Self-Adaptation Ability of Zinc Oxide Nanoparticles Enables Reliable Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E269. [PMID: 32033506 PMCID: PMC7075113 DOI: 10.3390/nano10020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
Optimal procedures for reliable anti-cancer treatments involve the systematic delivery of zinc oxide nanoparticles, which spread through the circulatory system. The success of these procedures may largely depend on the NPs' ability of self-adapting their physicochemical properties to overcome the different challenges facing at each stage on its way to the interior of a cancerous cell. In this article, we combine a multiscale approach, a unique nanoparticle model, and available experimental data to characterize the behavior of zinc oxide nanoparticles under different vessels rheology, pH levels, and biological environments. We investigate their ability to prevent aggregation, allow prolonged circulation time in the bloodstream, avoid clearance, conduct themselves through the capillarity system to reach damaged tissues, and selectively approach to target cancerous cells. Our results show that non-functionalized spherical zinc oxide nanoparticles with surface density N = 5.89 × 10-6 mol/m2, protonation and deprotonation rates pKa = 10.9 and pKb = -5.5, and NP size in the range of 20-50 nm are the most effective, smart anti-cancer agents for biomedical treatments.
Collapse
Affiliation(s)
- Zane Taylor
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA;
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Marucho M. A Java Application to Characterize Biomolecules and Nanomaterials in Electrolyte Aqueous Solutions. COMPUTER PHYSICS COMMUNICATIONS 2019; 242:104-119. [PMID: 31827306 PMCID: PMC6905646 DOI: 10.1016/j.cpc.2019.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The electrostatic, entropic and surface interactions between a macroion (nanoparticle or biomolecule), surrounding ions and water molecules play a fundamental role in the behavior and function of colloidal systems. However, the molecular mechanisms governing these phenomena are still poorly understood. One of the major limitations in procuring this understanding is the lack of appropriate computational tools. Additionally, only experts in the field with an extensive background in programming, who are trained in statistical mechanics, and have access to supercomputers are able to study these systems. To overcome these limitations, in this article, we present a free, multiplatform, portable Java software, which provides experts and non-experts in the field an easy and efficient way to obtain an accurate molecular characterization of electrical and structural properties of aqueous electrolyte mixture solutions around both cylindrical- and spherical-like rigid macroions under multiple conditions. These properties include the normalized ions and water density profile distributions, the mean electrostatic potential, the integrated charge, the zeta potential, the electrostatic potential energy, the particle crowding entropy energy, the ion-ion electrostatic direct correlation energy, and the ionic potential of mean force. The Java software does not require outstanding skills and comes with detailed user-guide documentation. The application is based on the so-called Classical Density Functional Theory Solver (CSDFTS), which was successfully applied to a variety of rod-like biopolymers, rigid-like globular proteins, nanoparticles, and nano-rods. CSDFTS implements several electrolyte and macroion models, uses different levels of approximation and takes advantage of high performance Fortran90 routines and optimized libraries. These features enable the software to run on single processor computers at low-to-moderate computational cost depending on the computer performance, the grid resolution, and the characterization of the macroion and the electrolyte solution, among other factors. As a unique feature, the software comes with a graphical user interface (GUI) that allows users to take advantage of the visually guided setup of the required input data to properly characterize the system and configure the solver. Several examples on nanomaterials and biomolecules are provided to illustrate the use of the GUI and the solver performance.
Collapse
Affiliation(s)
- Marcelo Marucho
- , website: https://www.utsa.edu/physics/faculty/MarceloMarucho.html
| |
Collapse
|
11
|
Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson-Boltzmann description. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Hunley C, Uribe D, Marucho M. A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions. RSC Adv 2018; 8:12017-12028. [PMID: 30761211 PMCID: PMC6369918 DOI: 10.1039/c7ra12799e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An accurate and efficient characterization of the polyelectrolyte properties for cytoskeleton filaments are key to the molecular understanding of electrical signal propagation, bundle and network formation, as well as their potential nanotechnological applications. In this article, we introduce an innovative multi-scale approach able to account for the atomistic details of a protein molecular structure, its biological environment, and their impact on electrical impulses propagating along wild type actin filaments. The formulation includes non-trivial contributions to the ionic electrical conductivity and capacitance coming from the diffuse part of the electrical double layer of G-actins. We utilize this monomer characterization in a non-linear inhomogeneous transmission line prototype model to account for the monomer–monomer interactions, dissipation and damping perturbations along the filament length. A novel, simple, accurate, approximate analytic expression has been obtained for the transmission line model. Our results reveal the propagation of electrical signal impulses in the form of solitons for the range of voltage stimulus and electrolyte solutions typically present for intracellular and in vitro conditions. The approach predicts a lower electrical conductivity with higher linear capacitance and non-linear accumulation of charge for intracellular conditions. Our results show a significant influence of the voltage input on the electrical impulse shape, attenuation and kern propagation velocity. The filament is able to sustain the soliton propagation at almost constant kern velocity for the in vitro condition, whereas the intracellular condition displays a remarkable deceleration. Additionally, the solitons are narrower and travel faster at higher voltage input. As a unique feature, this multi-scale theory is able to account for molecular structure conformation (mutation) and biological environment (protonations/deprotonations) changes often present in pathological conditions. It is also applicable to other highly charged rod-like polyelectrolytes with relevance in biomedicine and biophysics. An innovative analytic solution accounting for the molecular structure, its biological environment, and their impact on electrical impulses along microfilaments.![]()
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| | - Diego Uribe
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| |
Collapse
|
13
|
Guerrero-García GI, González-Tovar E, Chávez-Páez M, Kłos J, Lamperski S. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness. Phys Chem Chem Phys 2017; 20:262-275. [PMID: 29204593 DOI: 10.1039/c7cp05433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Collapse
Affiliation(s)
| | - Enrique González-Tovar
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Martín Chávez-Páez
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Jacek Kłos
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | | |
Collapse
|