1
|
Zhou D, Zhang F, Wang B, He J, Bai Y, Bian H. Anion Recognition in Solution: Insights from Thermodynamics and Ultrafast Structural Dynamics. J Phys Chem Lett 2023:11183-11189. [PMID: 38055627 DOI: 10.1021/acs.jpclett.3c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Anion recognition through noncovalent interactions stands as an emerging field in supramolecular chemistry, exerting a profound influence on the regulation of biological functions. Herein, the thermodynamics of complexation between sodium cyanate (NaOCN) and calix[4]pyrrole was systematically investigated by linear and nonlinear IR spectroscopy, highlighting enthalpy changes as the dominant driving force. The overall orientational relaxation of bound anion can be described by an Arrhenius-type activated process, yielding an activation energy of 15.0 ± 1.0 kJ mol-1. The structural dynamics of contact ion pairs (CIPs) formed between Na+ and OCN- in solution showed a negligible temperature effect, suggesting entropy changes as the principal governing factor. Further analysis revealed that anion recognition in solution is mediated by conformational changes of the receptor and collective rearrangement of hydrogen bond dynamics. This study, framed within the paradigms of thermodynamics and ultrafast structural dynamics, substantially advances our comprehension of the microscopic mechanisms underlying anion recognition in the realm of supramolecular chemistry.
Collapse
Affiliation(s)
- Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baihui Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Wang L, Morita A, North NM, Baumler SM, Springfield EW, Allen HC. Identification of Ion Pairs in Aqueous NaCl and KCl Solutions in Combination with Raman Spectroscopy, Molecular Dynamics, and Quantum Chemical Calculations. J Phys Chem B 2023; 127:1618-1627. [PMID: 36757371 DOI: 10.1021/acs.jpcb.2c07923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This work summarizes a theoretical analysis of the perturbation on Raman spectra in aqueous NaCl and KCl solutions with the aim to detect ion pairs. The experimental Raman spectra, both polarized and depolarized, are perturbed by these ions to a comparable extent or somewhat less by KCl than NaCl. This result appears to be contrary to the molecular dynamics (MD) simulation showing that the isolated and separated ions of KCl should have a larger perturbation than NaCl, as the solvation shell of K+ is larger than that of Na+. The apparent discrepancy signifies the ion pair formation which is more substantial for KCl than NaCl. The MD simulations and quantum chemical calculations revealed that KCl forms ion pairs more than NaCl and that the ion pair formation reduces the perturbation on the Raman spectra more for KCl. The present analysis shows that the perturbed Raman spectra provide a useful sign to evaluate the ion pair formation in aqueous solutions.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku Sendai 980-8578, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku Sendai 980-8578, Japan
| | - Nicole M North
- Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Stephen M Baumler
- Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Elliot W Springfield
- Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Liu Y, Zheng B, Zhang T, Chen Y, Liu J, Wang Z, Gong X. Magnetic field intensified electrodeposition of low-concentration copper ions in aqueous solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Li X, Zhou D, Hao H, Chen H, Weng Y, Bian H. Vibrational Relaxation Dynamics of a Semiconductor Copper(I) Thiocyanate (CuSCN) Film as a Hole-Transporting Layer. J Phys Chem Lett 2020; 11:548-555. [PMID: 31884795 DOI: 10.1021/acs.jpclett.9b03480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The semiconductor CuSCN film, which is typically used as the hole-transporting layer (HTL) in solar cell studies, has been investigated by Fourier transform infrared (FTIR) spectroscopy and ultrafast transient infrared (IR) spectroscopy. A sharp peak at 2175 cm-1 corresponding to the CN vibrational stretching mode in CuSCN was observed, and the peak frequency remained unchanged by varying the thickness of the CuSCN thin film. Vibrational relaxation measurements showed that the 0-1 and 1-2 transitions of CN stretching can be observed at 2175 and 2140 cm-1, respectively. The heat-induced absorption and bleaching peaks (2167 and 2175 cm-1) can be clearly seen at a waiting time of 40 ps. The vibrational relaxation of the CN stretching mode determined from the 1-2 transition exhibited a biexponential decay with time constants of 7.4 ± 0.5 (90%) and 158 ± 50 ps (10%). Importantly, the abnormal anisotropy decay of the CN stretching mode in the CuSCN thin film was also observed for the first time. A detailed analysis showed that the distinct anisotropy decay curve could be described using a triexponential decay function, which was explained by three different processes: resonance energy transfer (∼8 ps), a thermalization process (∼40 ps), and molecular rotation (∼150 ps). The time scale of the thermalization process caused by the vibrational relaxation in CuSCN is at a time scale of 40 ps, which is important for us to understand the thermally activated charge-transport property of the CuSCN film employed as the HTL. Further UV pump-IR probe measurement revealed that the carrier scattering and relaxation processes in the CuSCN film are strongly associated with the vibrational excitation and relaxation dynamics of the CN stretching mode. It is expected that the fundamental understanding of the vibrational relaxation dynamics of the CuSCN thin film should provide helpful insight to elucidate its role as the HTL in solar cell studies at the molecular level.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
5
|
Gerz I, Lindh EM, Thordarson P, Edman L, Kullgren J, Mindemark J. Oligomer Electrolytes for Light-Emitting Electrochemical Cells: Influence of the End Groups on Ion Coordination, Ion Binding, and Turn-on Kinetics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40372-40381. [PMID: 31621280 DOI: 10.1021/acsami.9b15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrolyte is an essential constituent of the light-emitting electrochemical cell (LEC), since its operating mechanism is dependent on the redistribution of mobile ions in the active layer. Recent developments of new ion transporters have yielded high-performance devices, but knowledge about the interactions between the ionic species and the ion transporters and the influence of these interactions on the LEC performance is lacking. We therefore present a combined computational and experimental effort that demonstrates that the selection of the end group in a star-branched oligomeric ion transporter based on trimethylolpropane ethoxylate has a paramount influence on the ionic interactions in the electrolyte and thereby also on the performance of the corresponding LECs. With hydroxyl end groups, the cation from the salt is strongly coordinated to the ion transporter, which leads to suppression of ion pairing, but the penalty is a hindered ion release and a slow turn-on for the LEC devices. With methoxy end groups, an intermediate coordination strength is seen together with the formation of contact ion pairs, but the LEC performance is very good with fast turn-on. Using a series of ion transporters with alkyl carbonate end groups, the ion transporter:cation coordination strength is lowered further, but the turn-on kinetics are slower than what is seen for devices comprising the methoxy end-capped ion transporter.
Collapse
Affiliation(s)
- Isabelle Gerz
- Department of Chemistry-Ångström Laboratory , Uppsala University , Box 538, SE-751 21 Uppsala , Sweden
| | - E Mattias Lindh
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-901 87 Umeå , Sweden
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-901 87 Umeå , Sweden
| | - Jolla Kullgren
- Department of Chemistry-Ångström Laboratory , Uppsala University , Box 538, SE-751 21 Uppsala , Sweden
| | - Jonas Mindemark
- Department of Chemistry-Ångström Laboratory , Uppsala University , Box 538, SE-751 21 Uppsala , Sweden
| |
Collapse
|
6
|
Kossowska D, Park K, Park JY, Lim C, Kwak K, Cho M. Rational Design of an Acetylenic Infrared Probe with Enhanced Dipole Strength and Increased Vibrational Lifetime. J Phys Chem B 2019; 123:6274-6281. [DOI: 10.1021/acs.jpcb.9b04925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Jun Young Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Chaiho Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|