1
|
Liu H, Xie W, Ding Y, Chen K, Wang S, Huo H, Yang L. Review of molecular dynamics simulations in laser-based micro/nano-fabrication. NANOSCALE 2024; 16:21189-21215. [PMID: 39350757 DOI: 10.1039/d4nr03305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Laser technology is integral to the advancement of micro/nano-fabrication. While laser machining offers numerous advantages over alternative micro/nano-fabrication techniques, several challenges and bottlenecks continue to impede its large-scale industrial implementation. In response to these constraints, the molecular dynamics (MD) method has emerged as a formidable tool for optimizing the process parameters of laser micro/nano-fabrication and investigating alternative laser-based micro/nano-fabrication techniques. In this review, the application of MD in laser-based micro/nano-fabrication is comprehensively examined, including numerical simulations of short-pulse, long-pulse, continued laser and hybrid laser machining. The corresponding MD simulation schemes for lasers with different pulse widths are outlined. The mechanisms of laser-material interactions across diverse processing scenarios and the complete process of laser-based micro/nano-fabrication are also elucidated. Furthermore, the prevailing challenges in this domain and potential solutions are discussed, with future research directions being charted based on current knowledge and technological advancements.
Collapse
Affiliation(s)
- Hao Liu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Wanda Xie
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Ye Ding
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Ke Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Shuiwang Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Haodong Huo
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Lijun Yang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
2
|
Xu H, Han L, Huang J, Du B, Zhan D. Scanning Electrochemical Probe Lithography for Ultra-Precision Machining of Micro-Optical Elements with Freeform Curved Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402743. [PMID: 38940401 DOI: 10.1002/smll.202402743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Two challenges should be overcome for the ultra-precision machining of micro-optical element with freeform curved surface: one is the intricate geometry, the other is the hard-to-machining optical materials due to their hardness, brittleness or flexibility. Here scanning electrochemical probe lithography (SECPL) is developed, not only to meet the machining need of intricate geometry by 3D direct writing, but also to overcome the above mentioned mechanical properties by an electrochemical material removal mode. Through the electrochemical probe a localized anodic voltage is applied to drive the localized corrosion of GaAs. The material removal rate is obtained as a function of applied voltage, motion rate, scan segment, etc. Based on the material removal function, an arbitrary geometry can be converted to a spatially distributed voltage. Thus, a series of micro-optical element are fabricated with a machining accuracy in the scale of 100 s of nanometers. Notably, the spiral phase plate shows an excellent performance to transfer parallel light to vortex beam. SECPL demonstrates its excellent controllability and accuracy for the ultra-precision machining of micro-optical devices with freeform curved surface, providing an alternative chemical approach besides the physical and mechanical techniques.
Collapse
Affiliation(s)
- Hantao Xu
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lianhuan Han
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianan Huang
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bingqian Du
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongping Zhan
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Lai Z, Liu M, Bi P, Huang F, Jin Y. Perspectives on Corrosion Studies Using Scanning Electrochemical Cell Microscopy: Challenges and Opportunities. Anal Chem 2023; 95:15833-15850. [PMID: 37844123 DOI: 10.1021/acs.analchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) allows for electrochemical imaging at the micro- or nanoscale by confining the electrochemical reaction cell in a small meniscus formed at the end of a micro- or nanopipette. This technique has gained popularity in electrochemical imaging due to its high-throughput nature. Although it shows considerable application potential in corrosion science, there are still formidable and exciting challenges to be faced, particularly relating to the high-throughput characterization and analysis of microelectrochemical big data. The objective of this perspective is to arouse attention and provide opinions on the challenges, recent progress, and future prospects of the SECCM technique to the electrochemical society, particularly from the viewpoint of corrosion scientists. Specifically, four main topics are systematically reviewed and discussed: (1) the development of SECCM; (2) the applications of SECCM for corrosion studies; (3) the challenges of SECCM in corrosion studies; and (4) the opportunities of SECCM for corrosion science.
Collapse
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Min Liu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Peng Bi
- Laboratory for Nuclear Materials, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| |
Collapse
|
4
|
Li B, Fan L, Bai J, He J, Su J, Wang S, Deng C, Liu S, Zhang Z. Study on Porosity of Thermal-Sprayed Commercially Pure Aluminum Coating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6612. [PMID: 37834748 PMCID: PMC10574577 DOI: 10.3390/ma16196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Porosity is closely related to the corrosion and wear properties of a coating processed by thermal-spraying technology, and the quantitative characterization of porosity is a crucial part of the research on coating structures. The current image analysis method often uses the mechanical polishing method recommended by ISO to measure a coating porosity. This method has been proved to be an effective method for the characterization of oxide coatings. However, due to the significant differences in the physical and chemical properties between aluminum and oxides, this method may not be suitable for aluminum coatings, and a more appropriate approach needs to be explored. In this paper, the effects of three polishing technologies (mechanical polishing, argon-ion-beam polishing, and electrolytic polishing) on the porosity measurement of pure aluminum coatings were compared and studied. The research results showed that the commonly used mechanical polishing method and more advanced argon-ion-beam polishing method could not completely reveal the pore structure because SiC particles would be embedded in the pure aluminum coatings during mechanical polishing, filling large pores. Although electrolytic polishing technology had advantages in revealing the macroporous structure, it would introduce a microporous structure and oxides, which would affect the measurement of the coating porosity. The composite polishing technology (electrolytic polishing + argon-ion-beam polishing) could perfectly reveal the pore structure in the pure-aluminum coating, and the porosity of arc-sprayed aluminum coating was 9.9%, which was close to the macroscopic true value measured using the weighing method of 10.2%.
Collapse
Affiliation(s)
- Bo Li
- Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550000, China; (B.L.); (L.F.)
| | - Lei Fan
- Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550000, China; (B.L.); (L.F.)
| | - Jie Bai
- Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550000, China; (B.L.); (L.F.)
| | - Jinhang He
- Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550000, China; (B.L.); (L.F.)
| | - Jianfeng Su
- An Shun Power Supply Bureau, Guizhou Power Grid Co., Ltd., Anshun 561000, China;
| | - Song Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China (S.L.)
| | - Chao Deng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China (S.L.)
| | - Shifeng Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China (S.L.)
| | - Zhiqing Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China (S.L.)
| |
Collapse
|
5
|
Liu B, Han L, Xu H, Su JJ, Zhan D. Ultrasonic-Assisted Electrochemical Nanoimprint Lithography: Forcing Mass Transfer to Enhance the Localized Etching Rate of GaAs. Chem Asian J 2023; 18:e202300491. [PMID: 37493590 DOI: 10.1002/asia.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Electrochemical nanoimprint lithography (ECNL) has emerged as a promising technique for fabricating three-dimensional micro/nano-structures (3D-MNSs) directly on semiconductor wafers. This technique is based on a localized corrosion reaction induced by the contact potential across the metal/semiconductor boundaries. The anodic etching of semiconductor and the cathodic reduction of electron acceptors occur at the metal/semiconductor/electrolyte interface and the Pt mold surface, respectively. However, the etching rate is limited by the mass transfer of species in the ultrathin electrolyte layer between the mold and the workpiece. To overcome this challenge, we introduce the ultrasonics effect into the ECNL process to facilitate the mass exchange between the ultrathin electrolyte layer and the bulk solution, thereby improving the imprinting efficiency. Experimental investigations demonstrate a positive linear relationship between the reciprocal of the area duty ratio of the mold and the imprinting efficiency. Furthermore, the introduction of ultrasonics improves the imprinting efficiency by approximately 80 %, irrespective of the area duty ratio. The enhanced imprinting efficiency enables the fabrication of 3D-MNSs with higher aspect ratios, resulting in a stronger light trapping effect. These results indicate the prospective applications of ECNL in semiconductor functional devices, such as photoelectric detection and photovoltaics.
Collapse
Affiliation(s)
- Bing Liu
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Fujian, China
| | - Lianhuan Han
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Fujian, China
| | - Hantao Xu
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian-Jia Su
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongping Zhan
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Peng Z, Zhang Y, Choi CLR, Zhang P, Wu T, Chan YK. Continuous roller nanoimprinting: next generation lithography. NANOSCALE 2023. [PMID: 37376894 DOI: 10.1039/d2nr06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoimprint lithography (NIL) is a cost-effective and high-throughput technique for replicating nanoscale structures that does not require expensive light sources for advanced photolithography equipment. NIL overcomes the limitations of light diffraction or beam scattering in traditional photolithography and is suitable for replicating nanoscale structures with high resolution. Roller nanoimprint lithography (R-NIL) is the most common NIL technique benefiting large-scale, continuous, and efficient industrial production. In the past two decades, a range of R-NIL equipment has emerged to meet the industrial needs for applications including biomedical devices, semiconductors, flexible electronics, optical films, and interface functional materials. R-NIL equipment has a simple and compact design, which allows multiple units to be clustered together for increased productivity. These units include transmission control, resist coating, resist curing, and imprinting. This critical review summarizes the hitherto R-NIL processes, their typical technical problems, and corresponding solutions and gives guidelines for developing advanced R-NIL equipment.
Collapse
Affiliation(s)
- Zhiting Peng
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chin Long Ronald Choi
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Pengcheng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
7
|
Lai Z, Li D, Cai S, Liu M, Huang F, Zhang G, Wu X, Jin Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal Chem 2023; 95:357-373. [PMID: 36625128 DOI: 10.1021/acs.analchem.2c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Dingshi Li
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Shuangyu Cai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Min Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Guodong Zhang
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Xinyue Wu
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| |
Collapse
|
8
|
Micromachining of Predesigned Perpendicular Copper Micropillar Array by Scanning Electrochemical Microscopy. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Li Z, Li W, Cao B. Simulation Analysis of Multi-Physical Field Coupling and Parameter Optimization of ECM Miniature Bearing Outer Ring Based on the Gas-Liquid Two-Phase Turbulent Flow Model. MICROMACHINES 2022; 13:mi13060902. [PMID: 35744517 PMCID: PMC9230144 DOI: 10.3390/mi13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical machining (ECM) is an essential method for machining miniature bearing outer rings on the high-temperature-resistant nickel-based alloy GH4169. However, the influence of electrolyte temperature distribution and bubble rate distribution on electrolyte conductivity in the ECM area could not be fully considered, resulting in the simulation model not being able to accurately predict the machining accuracy of the outer ring of the miniature bearing, making it challenging to model and predict the optimal process parameters. In this paper, a multiphysics field coupled simulation model of electric, flow, and temperature fields during the ECM of the miniature bearing outer ring is established based on the gas-liquid two-phase turbulent flow model. The simulation analyzed the distribution of electrolyte temperature, bubble rate, flow rate, and current density in the machining area, and the profile change of the outer ring of the miniature bearing during the machining process. The analysis of variance and significance of machining voltage, electrolyte concentration, electrolyte inlet flow rate, and interaction on the mean error of the ECM miniature bearing outer rings was derived from the central composite design. The regression equation between the average error and the process parameters was established, and the optimal combination of process parameters for the average error was predicted, i.e., the minimum value of 0.014 mm could be achieved under the conditions of a machining voltage of 16.20 V, an electrolyte concentration of 9.29%, and an electrolyte inlet flow rate of 11.84 m/s. This is important to improve the machining accuracy of the outer ring of the ECM miniature bearing.
Collapse
Affiliation(s)
- Zhaolong Li
- Key Laboratory of Advanced Manufacturing Intelligent Technology of Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China; (W.L.); (B.C.)
- Correspondence: ; Tel.: +86-0451-8639-0588
| | - Wangwang Li
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China; (W.L.); (B.C.)
| | - Bingren Cao
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China; (W.L.); (B.C.)
| |
Collapse
|
10
|
Xu H, Han L, Su JJ, Tian ZQ, Zhan D. Spatially-separated and photo-enhanced semiconductor corrosion processes for high-efficient and contamination-free electrochemical nanoimprint lithography. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Aarts M, Reiser A, Spolenak R, Alarcon-Llado E. Confined pulsed diffuse layer charging for nanoscale electrodeposition with an STM. NANOSCALE ADVANCES 2022; 4:1182-1190. [PMID: 35308601 PMCID: PMC8846379 DOI: 10.1039/d1na00779c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Regulating the state of the solid-liquid interface by means of electric fields is a powerful tool to control electrochemistry. In scanning probe systems, this can be confined closely to a scanning (nano)electrode by means of fast potential pulses, providing a way to probe the interface and control electrochemical reactions locally, as has been demonstrated in nanoscale electrochemical etching. For this purpose, it is important to know the spatial extent of the interaction between pulses applied to the tip, and the substrate. In this paper we use a framework of diffuse layer charging to describe the localization of electrical double layer charging in response to a potential pulse at the probe. Our findings are in good agreement with literature values obtained in electrochemical etching. We show that the pulse can be much more localized by limiting the diffusivity of the ions present in solution, by confined electrodeposition of cobalt in a dimethyl sulfoxide solution, using an electrochemical scanning tunnelling microscope. Finally, we demonstrate the deposition of cobalt nanostructures (<100 nm) using this method. The presented framework therefore provides a general route for predicting and controlling the time-dependent region of interaction between an electrochemical scanning probe and the surface.
Collapse
Affiliation(s)
- Mark Aarts
- Center for Nanophotonics, AMOLF Science Park 109 Amsterdam Netherlands
| | - Alain Reiser
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 Zürich Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 Zürich Switzerland
| | | |
Collapse
|
12
|
Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with Enhanced Electrochromism and Electrochemical Tunable Diffraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58011-58018. [PMID: 34797985 DOI: 10.1021/acsami.1c17897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro-nanofabrication of conductive polymers (CPs) with functional structures is in great demand in organic electronic devices, micro-optics, and flex sensors. Here, we report the fabrication of micropatterned poly(3,4-ethylenedioxythiophene) (PEDOT) and its applications on flexible electrochromic devices and tunable diffractive optics. The localized electropolymerization of 3,4-ethylenedioxythiophene at the electrode/agarose gel stamping interface through an electrochemical wet stamping (E-WETS) technique is used to fabricate PEDOT with functional microstructures. PEDOT microdots, micro-rectangles, and interdigitated array microelectrodes are fabricated with submicron tolerance and ∼2 μm smallest feature size. Furthermore, the flexible PEDOT electrochromic devices consisting of the logo of Xiamen University are fabricated with a reversible switch of absorptivity. The improved optical and coloration-amperometric responses of electrochromism are demonstrated because of the enhanced charge transport rate of the micropatterned PEDOT. The electrochromism of the 2D PEDOT micropatterns is further used as a binary diffractive optical element to modulate the intensity and efficiency of diffracted 2D structural light because of the switchable absorptivity during doping and dedoping processes. When the potential is switched from 1 to -1 V to tune the absorptivity at ∼600 nm from low to high, the intensity of zero-order diffraction light spot decreases with the intensity of other order diffraction light spots increasing dramatically. The results demonstrate that E-WETS provides an alternative method for the fabrication of CPs with functional micro-nanostructures. The electrochemical tunable diffraction with high reversibility and fast response is of potential applications in micro-optics and flex sensors.
Collapse
Affiliation(s)
- Duan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hao Tan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tianyi Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Hezhang Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
13
|
Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Usually, the residual layer remains after patterning TiO2 sol. The existence of the TiO2 residual layer in the non-pattern region affects its application in microelectronic devices. Here, a simple method, based on room-temperature imprinting, to fabricate a residual-free TiO2 pattern is proposed. The thermoplastic polymer with Ti4+ salt was fast patterned at room temperature by imprinting, based on the different interfacial force. Then, the patterned thermoplastic polymer with Ti4+ salt was induced into the TiO2 lines without residual layer under the hydrothermal condition. This method provides a new idea to pattern metal oxide without residual layer, which is potentially applied to the gas sensor, the optical detector and the light emitting diode.
Collapse
|
14
|
Zhu Z, Li J, Peng H, Liu D. Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. MICROMACHINES 2021; 12:mi12060656. [PMID: 34204899 PMCID: PMC8227078 DOI: 10.3390/mi12060656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022]
Abstract
Heat exchangers are general equipment for energy exchange in the industrial field. Enhancing the heat transfer of a heat exchanger with low pump energy consumption is beneficial to the maximum utilization of energy. The optimization design for enhanced heat transfer structure is an effective method to improve the heat transfer coefficient. Present research shows that the biomimetic structures applied in different equipment could enhance heat transfer and reduce flow resistance significantly. Firstly, six biomimetic structures including the fractal-tree-like structure, conical column structure, hybrid wetting structure, scale structure, concave-convex structure and superhydrophobic micro-nano structure were summarized in this paper. The biomimetic structure characteristics and heat transfer enhancement and drag reduction mechanisms were analyzed. Secondly, four processing methods including photolithography, nanoimprinting, femtosecond laser processing and 3D printing were introduced as the reference of biomimetic structure machining. Finally, according to the systemic summary of the research review, the prospect of biomimetic heat transfer structure optimization was proposed.
Collapse
Affiliation(s)
- Zhangyu Zhu
- School of Mechanical and Electrical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China;
| | - Juan Li
- School of Mechanical and Electrical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China;
- Correspondence:
| | - Hao Peng
- School of Mechanical and Power Engineering, Nanjing Tech University, 30 South Pu Zhu Road, Nanjing 211816, China;
| | - Dongren Liu
- Mechanical Engineering College, Yangzhou University, 88 South University Ave., Yangzhou 225009, China;
| |
Collapse
|
15
|
Bilal M, Sakairi M. 3D printed solution flow type microdroplet cell for simultaneous area selective anodizing. J Adv Res 2020; 26:43-51. [PMID: 33133682 PMCID: PMC7584678 DOI: 10.1016/j.jare.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Recent advancements in 3D printing technology allow us to design and fabricate customized droplets cells for localized electrochemical patterning. OBJECTIVES In this study, 3D printed solution-flow type microdroplet cell (Sf-MDC) is proposed for localized anodizing of two different regions on Al surface. The effect of printing orientation on 3D printing parameters is elucidated to minimize the resin consumption, printing time and material wastage. The capability of Sf-MDC to fabricate porous alumina patterns with adjustable pore size and thickness is explored by varying the length of Pt wire inside each capillary. METHODS The Sf-MDC was optimally fabricated using 3D printer at the highest possible resolution. The Al specimens were electropolished in 13.6 kmolm-3 CH3COOH/2.56 kmolm-3 HClO4 at 278 K and 28 V for 145 s. 0.22 kmolm-3 oxalic acid (COOH)2 solution was prepared for anodizing. The specimen was set on pulse-XYZ stage controller and anodized (at 50 V and 323 K) using the Sf-MDC. RESULTS Anodizing with Sf-MDC resulted in the formation of two uniformly sized porous alumina lines on the specimen. Porous alumina lines exhibited similar pore geometry, interpore distance and pores arrangement, suggesting uniform supply of current to both the droplets. Layered-type cross-sectional structure with each layer having a thickness of 2.7 mm was formed for both the porous alumina lines. By varying the length of Pt wire inside each capillary, porous alumina lines with different porous structure and oxide thickness were simultaneously fabricated. CONCLUSIONS Simultaneous anodizing with Sf-MDC can be applied for fast fabrication of porous alumina filters with different porous structure and for various patterning applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masatoshi Sakairi
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
16
|
Zhang J, Chen D, Guo J, Sartin MM, Tian ZQ, Tian ZW, Zhan D. Mold forming of multilevel nanogratings by electrochemical buckling microfabrication. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Liu S, Yuan T, Wei W, Su H, Wang W. Photoassisted Electrochemical Micropatterning of Gold Film. Anal Chem 2019; 91:9413-9418. [PMID: 31282660 DOI: 10.1021/acs.analchem.9b01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical etching is a powerful and popular method for fabricating micropatterns on metal substrates for use in electronic devices, electrochemical sensors, and plasmonic substrates. In order to achieve micropatterning, either a prepatterned insulating layer (mask) or a scanning microelectrode is often required to selectively trigger electrochemical etching at the desired locations. In the present work, we employed a well-focused light beam to enable the photoassisted electrochemical etching of gold film with a spatial resolution close to the optical diffraction limit (∼300 nm). It was found that the simultaneous application of light irradiation and appropriate potential were critical for the oxidative dissolution (i.e., etching) of gold to occur. Superior controllability of light beam allowed for the direct-write micropatterning without the need of mask or probe. Etching kinetics and mechanism were also studied by monitoring the dynamic evolution of optical transparency with a conventional transmission bright-field microscope, together with characterizations on the as-obtained patterns with atomic force microscopy and electron microscopy. This study is anticipated to contribute a feasible method for the micropatterning of gold film with implications for nanoelectronics and electrochemical sensors.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hua Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
18
|
Guo C, Zhang L, Sartin MM, Han L, Tian ZW, Tian ZQ, Zhan D. Photoelectric effect accelerated electrochemical corrosion and nanoimprint processes on gallium arsenide wafers. Chem Sci 2019; 10:5893-5897. [PMID: 31360393 PMCID: PMC6566067 DOI: 10.1039/c9sc01978b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Here we report photoelectric-effect-enhanced interfacial charge transfer reactions.
Here we report photoelectric-effect-enhanced interfacial charge transfer reactions. The electrochemical corrosion rate of n-type gallium arsenide (n-GaAs) induced by the contact potential at platinum (Pt) and GaAs boundaries can be accelerated by the photoelectric effect of n-GaAs. When a GaAs wafer is illuminated with a xenon light source, the electrons in the valence band of GaAs will be excited to the conduction band and then move to the Pt boundaries due to the different work functions of the two materials. This results in an enhanced contact electric field as well as an enlarged Pt/GaAs contact potential. Consequently, in the presence of electrolyte solution, the polarizations of both the Pt/solution interface and the GaAs/solution interface at the Pt/GaAs/solution 3-phase boundary are enhanced. If the accumulated electrons on the Pt side are removed by electron acceptors in the solution, anodic corrosion of GaAs will be accelerated strictly along the Pt/GaAs/solution 3-phase boundary. This photo-enhanced electrochemical phenomenon can increase the corrosion rate of GaAs and accelerate the process of electrochemical nanoimprint lithography (ECNL) on GaAs. The method opens an innovative, highly efficient, low-cost nanoimprint technique performed directly on semiconductors, and it has prospective applications in the semiconductor industry.
Collapse
Affiliation(s)
- Chengxin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Lianhuan Han
- Department of Mechanical and Electrical Engineering , School of Aerospace Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhao-Wu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| |
Collapse
|
19
|
Bastide S, Torralba E, Halbwax M, Le Gall S, Mpogui E, Cachet-Vivier C, Magnin V, Harari J, Yarekha D, Vilcot JP. 3D Patterning of Si by Contact Etching With Nanoporous Metals. Front Chem 2019; 7:256. [PMID: 31106193 PMCID: PMC6494945 DOI: 10.3389/fchem.2019.00256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Nanoporous gold and platinum electrodes are used to pattern n-type silicon by contact etching at the macroscopic scale. This type of electrode has the advantage of forming nanocontacts between silicon, the metal and the electrolyte as in classical metal assisted chemical etching while ensuring electrolyte transport to and from the interface through the electrode. Nanoporous gold electrodes with two types of nanostructures, fine and coarse (average ligament widths of ~30 and 100 nm, respectively) have been elaborated and tested. Patterns consisting in networks of square-based pyramids (10 × 10 μm2 base × 7 μm height) and U-shaped lines (2, 5, and 10 μm width × 10 μm height × 4 μm interspacing) are imprinted by both electrochemical and chemical (HF-H2O2) contact etching. A complete pattern transfer of pyramids is achieved with coarse nanoporous gold in both contact etching modes, at a rate of ~0.35 μm min−1. Under the same etching conditions, U-shaped line were only partially imprinted. The surface state after imprinting presents various defects such as craters, pores or porous silicon. Small walls are sometimes obtained due to imprinting of the details of the coarse gold nanostructure. We establish that np-Au electrodes can be turned into “np-Pt” electrodes by simply sputtering a thin platinum layer (5 nm) on the etching (catalytic) side of the electrode. Imprinting with np Au/Pt slightly improves the pattern transfer resolution. 2D numerical simulations of the valence band modulation at the Au/Si/electrolyte interfaces are carried out to explain the localized aspect of contact etching of n-type silicon with gold and platinum and the different surface state obtained after patterning. They show that n-type silicon in contact with gold or platinum is in inversion regime, with holes under the metal (within 3 nm). Etching under moderate anodic polarization corresponds to a quasi 2D hole transfer over a few nanometers in the inversion layer between adjacent metal and electrolyte contacts and is therefore very localized around metal contacts.
Collapse
Affiliation(s)
- Stéphane Bastide
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182), CNRS, UPEC, Université Paris Est, Thiais, France
| | - Encarnacion Torralba
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182), CNRS, UPEC, Université Paris Est, Thiais, France
| | - Mathieu Halbwax
- Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université de Lille, Villeneuve d'Ascq, France
| | - Sylvain Le Gall
- Group of Electrical Engineering of Paris (GeePs), CNRS, Centralesupelec, Univ. Paris-Sud, Sorbonne Université, Gif sur Yvette, France
| | - Elias Mpogui
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182), CNRS, UPEC, Université Paris Est, Thiais, France
| | - Christine Cachet-Vivier
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182), CNRS, UPEC, Université Paris Est, Thiais, France
| | - Vincent Magnin
- Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université de Lille, Villeneuve d'Ascq, France
| | - Joseph Harari
- Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université de Lille, Villeneuve d'Ascq, France
| | - Dmitri Yarekha
- Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université de Lille, Villeneuve d'Ascq, France
| | - Jean-Pierre Vilcot
- Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. NANOSCALE HORIZONS 2019; 4:52-76. [PMID: 32254145 DOI: 10.1039/c8nh00223a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Through 3.7 billion years of evolution and natural selection, plants and animals in nature have ingeniously fulfilled a broad range of fascinating functions to achieve optimized performance in responding and adapting to changes in the process of interacting with complex natural environments. It is clear that the hierarchically organized micro/nanostructures of the surfaces of living organisms decisively manage fascinating and amazing functions, regardless of the chemical components of their building blocks. This conclusion now allows us to elucidate the underlying mechanisms whereby these hierarchical structures have a great impact on the properties of the bulk material. In this review, we mainly focus on advances over the last three years in bioinspired multiscale functional materials with specific wettability. Starting from selected naturally occurring surfaces, manmade bioinspired surfaces with specific wettability are introduced, with an emphasis on the cooperation between structural characteristics and macroscopic properties, including lotus leaf-inspired superhydrophobic surfaces, fish scale-inspired superhydrophilic/underwater superoleophobic surfaces, springtail-inspired superoleophobic surfaces, and Nepenthes (pitcher plant)-inspired slippery liquid-infused porous surfaces (SLIPSs), as well as other multifunctional surfaces that combine specific wettability with mechanical properties, optical properties and the unidirectional transport of liquid droplets. Afterwards, various top-down and bottom-up fabrication techniques are presented, as well as emerging cutting-edge applications. Finally, our personal perspectives and conclusions with regard to the transfer of micro- and nanostructures to engineered materials are provided.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | | |
Collapse
|
21
|
Microstructure and electrochemical anodic behavior of Inconel 718 fabricated by high-power laser solid forming. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
The coupling effect of slow-rate mechanical motion on the confined etching process in electrochemical mechanical micromachining. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
24
|
Han Z, Feng X, Guo Z, Niu S, Ren L. Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704652. [PMID: 29441617 DOI: 10.1002/adma.201704652] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/05/2017] [Indexed: 05/20/2023]
Abstract
Antifogging (AF) structure materials found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies, attracting enormous research interests owing to their potential applications in display devices, traffics, agricultural greenhouse, food packaging, solar products, and other fields. The outstanding performance of biological AF surfaces encourages the rapid development and wide application of new AF materials. In fact, AF properties are inextricably associated with their surface superwettability. Generally, the superwettability of AF materials depends on a combination of their surface geometrical structures and surface chemical compositions. To explore their general design principles, recent progresses in the investigation of bioinspired AF materials are summarized herein. Recent developments of the mechanism, fabrication, and applications of bioinspired AF materials with superwettability are also a focus. This includes information on constructing superwetting AF materials based on designing the topographical structure and regulating the surface chemical composition. Finally, the remaining challenges and promising breakthroughs in this field are also briefly discussed.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Zhiguang Guo
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| |
Collapse
|
25
|
Deng H, Huang R, Liu K, Zhang X. Abrasive-free polishing of tungsten alloy using electrochemical etching. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Tip current/positioning close-loop mode of scanning electrochemical microscopy for electrochemical micromachining. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|