1
|
Liu K, Yang H, Jiang Y, Liu Z, Zhang S, Zhang Z, Qiao Z, Lu Y, Cheng T, Terasaki O, Zhang Q, Gao C. Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity. Nat Commun 2023; 14:2424. [PMID: 37105957 PMCID: PMC10140298 DOI: 10.1038/s41467-023-38018-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Metastable noble metal nanocrystals may exhibit distinctive catalytic properties to address the sluggish kinetics of many important processes, including the hydrogen evolution reaction under alkaline conditions for water-electrolysis hydrogen production. However, the exploration of metastable noble metal nanocrystals is still in its infancy and suffers from a lack of sufficient synthesis and electronic engineering strategies to fully stimulate their potential in catalysis. In this paper, we report a synthesis of metastable hexagonal Pt nanostructures by coherent growth on 3d transition metal nanocrystals such as Ni without involving galvanic replacement reaction, which expands the frontier of the phase-replication synthesis. Unlike noble metal substrates, the 3d transition metal substrate owns more crystal phases and lower cost and endows the hexagonal Pt skin with substantial compressive strains and programmable charge density, making the electronic properties particularly preferred for the alkaline hydrogen evolution reaction. The energy barriers are greatly reduced, pushing the activity to 133 mA cmgeo-2 and 17.4 mA μgPt-1 at -70 mV with 1.5 µg of Pt in 1 M KOH. Our strategy paves the way for metastable noble metal catalysts with tailored electronic properties for highly efficient and cost-effective energy conversion.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yilan Jiang
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaojun Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Shumeng Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhixue Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhun Qiao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yiming Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Osamu Terasaki
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Zhang
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Chuanbo Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
2
|
Liu P, Qiu W, Zhang C, Tan Q, Zhang C, Zhang W, Song Y, Wang H, Li C. Kinetics of Furfural Hydrogenation over Bimetallic Overlayer Catalysts and the Effect of Oxygen Vacancy Concentration on Product Selectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201900625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ping Liu
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- School of Chemical EngineeringBeijing University of Chemical Technology Beijing 100029 P.R. China
| | - Weinan Qiu
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Chunyang Zhang
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Qiqi Tan
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Chen Zhang
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Wei Zhang
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Yongji Song
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Hong Wang
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| | - Cuiqing Li
- School of Chemical EngineeringBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijing Institute of Petrochemical Technology Beijing 102617 P.R. China
| |
Collapse
|
3
|
McBride F, Hodgson A. The reactivity of water and OH on Pt-Ni(111) films. Phys Chem Chem Phys 2018; 20:16743-16748. [PMID: 29881849 DOI: 10.1039/c8cp01205a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic Pt catalysts are of interest as water redox catalysts in low temperature fuel cells. Here we compare water and hydroxyl adsorption on Pt-Ni(111) films and a PtNi(111) alloy surface with the behaviour on the pure metals. Whereas water adsorbs and desorbs intact from close packed Pt and Ni, it dissociates on PtNi surfaces to form adsorbed hydroxyl and hydrogen. Reactivity to water increases in the order Pt(111) < monolayer Pt-Ni(111) < multilayer (2-6 ML) Pt-Ni(111) ∼ PtNi(111) surface alloy and does not scale directly with the Pt strain. Hydroxyl can also be formed by reaction with pre-adsorbed O and is less stable than on pure Pt, decomposing to water and O in a broad peak near 180 K, 20 K lower than on Pt(111). The reduced stability of OH on Pt-Ni(111) films is common to all the PtNi surfaces and consistent with bimetallic PtNi surfaces showing less blocking by OH during the oxygen reduction reaction.
Collapse
Affiliation(s)
- F McBride
- The University of Liverpool, Surface Science Research Centre, Liverpool, UK.
| | | |
Collapse
|
4
|
Lai Q, Zhang C, Holles JH. Mo@Pt overlayers as efficient catalysts for hydrodeoxygenation of guaiacol and anisole. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00565b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica alumina supported Mo@Pt overlayer catalysts were prepared via the directed deposition technique and evaluated for hydrodeoxygenation (HDO) of guaiacol and anisole.
Collapse
Affiliation(s)
- Qinghua Lai
- Department of Chemical Engineering
- University of Wyoming
- Laramie
- USA
| | - Chen Zhang
- Department of Chemical Engineering
- University of Wyoming
- Laramie
- USA
| | - Joseph H. Holles
- Department of Chemical Engineering
- University of Wyoming
- Laramie
- USA
| |
Collapse
|