1
|
Calle-Vallejo F. The ABC of Generalized Coordination Numbers and Their Use as a Descriptor in Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207644. [PMID: 37102632 PMCID: PMC10369287 DOI: 10.1002/advs.202207644] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The quest for enhanced electrocatalysts can be boosted by descriptor-based analyses. Because adsorption energies are the most common descriptors, electrocatalyst design is largely based on brute-force routines that comb materials databases until an energetic criterion is verified. In this review, it is shown that an alternative is provided by generalized coordination numbers (denoted by CN ¯ $\overline {{\rm{CN}}} $ or GCN), an inexpensive geometric descriptor for strained and unstrained transition metals and some alloys. CN ¯ $\overline {{\rm{CN}}} $ captures trends in adsorption energies on both extended surfaces and nanoparticles and is used to elaborate structure-sensitive electrocatalytic activity plots and selectivity maps. Importantly, CN ¯ $\overline {{\rm{CN}}} $ outlines the geometric configuration of the active sites, thereby enabling an atom-by-atom design, which is not possible using energetic descriptors. Specific examples for various adsorbates (e.g., *OH, *OOH, *CO, and *H), metals (e.g., Pt and Cu), and electrocatalytic reactions (e.g., O2 reduction, H2 evolution, CO oxidation, and reduction) are presented, and comparisons are made against other descriptors.
Collapse
Affiliation(s)
- Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018, Av. Tolosa 72, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
2
|
Liuzzi D, Fernandez E, Perez S, Ipiñazar E, Arteche A, Fierro JLG, Viviente JL, Pacheco Tanaka DA, Rojas S. Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The biomass-to-liquid (BtL) process is a promising technology to obtain clean, liquid, second-generation biofuels and chemicals. The BtL process, which comprises several steps, is based upon the gasification of biomass and the catalytic transformation of the syngas that is obtained via the Fischer-Tropsch synthesis (FTS) reaction, producing a hydrocarbon pool known as syncrude. The FTS process is a well-established technology, and there are currently very large FTS plants operating worldwide that produce liquid fuels and hydrocarbons from natural gas (NG) (gas-to-liquids, GtL process) and coal (coal-to-liquids, CtL process). Due to the limited availability of local biomass, the size of the BtL plants should be downscaled compared to that of a GtL or CtL plant. Since the feasibility of the XtL (X refers to any energy source that can be converted to liquid, including coal, NG, biomass, municipal solid waste, etc.) processes is strongly influenced by the economies of scale, the viability of small-scale BtL plants can be compromised. An interesting approach to overcome this issue is to increase the productivity of the FTS process by developing reactors and catalysts with higher productivities to generate the desired product fraction. Recently, by integrating membrane reactors with the FTS process the gas feeding and separation unit have been demonstrated in a single reactor. In this review, the most significant achievements in the field of catalytic membrane reactors for the FTS process will be discussed. Different types of membranes and configurations of membrane reactors, including H2O separation and H2-feed distribution, among others, will be analyzed.
Collapse
Affiliation(s)
- Dalia Liuzzi
- Estructura y Reactividad , Institute of Catalysis and Petrochemistry (CSIC) , Marie Curie 2, 28049 Madrid , Spain
| | - Ekain Fernandez
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián , Spain
| | - Susana Perez
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Leonardo da Vinci 11 , 01510 Miñano , Spain
| | - Enrique Ipiñazar
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián , Spain
| | - Amaya Arteche
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián , Spain
| | - José Luís G. Fierro
- Estructura y Reactividad , Institute of Catalysis and Petrochemistry (CSIC) , Marie Curie 2, 28049 Madrid , Spain
| | - Jose Luis Viviente
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián , Spain
| | - David Alfredo Pacheco Tanaka
- TECNALIA, Basque Research and Technology Alliance (BRTA) , Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián , Spain
| | - Sergio Rojas
- Estructura y Reactividad , Institute of Catalysis and Petrochemistry (CSIC) , Marie Curie 2, 28049 Madrid , Spain
| |
Collapse
|
3
|
Garlyyev B, Fichtner J, Piqué O, Schneider O, Bandarenka AS, Calle-Vallejo F. Revealing the nature of active sites in electrocatalysis. Chem Sci 2019; 10:8060-8075. [PMID: 31857876 PMCID: PMC6844223 DOI: 10.1039/c9sc02654a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Heterogeneous electrocatalysis plays a central role in the development of sustainable, carbon-neutral pathways for energy provision and the production of various chemicals. It determines the overall efficiency of electrochemical devices that involve catalysis at the electrode/electrolyte interface. In this perspective, we discuss key aspects for the identification of active centers at the surface of electrocatalysts and important factors that influence them. The role of the surface structure, nanoparticle shape/size and the electrolyte composition in the resulting catalytic performance is of particular interest in this work. We highlight challenges that from our point of view need to be tackled, and provide guidelines for the design of "real life" electrocatalysts for renewable energy provision systems as well as for the production of industrially important compounds.
Collapse
Affiliation(s)
- Batyr Garlyyev
- Physics of Energy Conversion and Storage , Technical University of Munich , James-Franck-Straße 1 , 85748 Garching , Germany .
| | - Johannes Fichtner
- Physics of Energy Conversion and Storage , Technical University of Munich , James-Franck-Straße 1 , 85748 Garching , Germany .
| | - Oriol Piqué
- Departament de Ciència de Materials i Química Fisica , Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| | - Oliver Schneider
- Electrochemical Research Group , Technische Universität München , Schleißheimerstraße 90a , 85748 Garching , Germany
| | - Aliaksandr S Bandarenka
- Physics of Energy Conversion and Storage , Technical University of Munich , James-Franck-Straße 1 , 85748 Garching , Germany . .,Catalysis Research Center , TUM , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Federico Calle-Vallejo
- Departament de Ciència de Materials i Química Fisica , Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| |
Collapse
|
4
|
Liu F, Ftouni J, Bruijnincx PCA, Weckhuysen BM. Phase‐Dependent Stability and Substrate‐Induced Deactivation by Strong Metal‐Support Interaction of Ru/TiO
2
Catalysts for the Hydrogenation of Levulinic Acid. ChemCatChem 2019. [DOI: 10.1002/cctc.201802040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Liu
- Inorganic Chemistry and Catalysis groupDebye Institute of Nanomaterial ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Jamal Ftouni
- Inorganic Chemistry and Catalysis groupDebye Institute of Nanomaterial ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis groupDebye Institute of Nanomaterial ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Organic Chemistry and Catalysis groupDebye Institute of Nanomaterial ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis groupDebye Institute of Nanomaterial ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
5
|
Calle-Vallejo F, Bandarenka AS. Enabling Generalized Coordination Numbers to Describe Strain Effects. CHEMSUSCHEM 2018; 11:1824-1828. [PMID: 29701917 DOI: 10.1002/cssc.201800569] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The world's growing energetic demand calls for efficient generation and interconversion of different types of energy. Heterogeneous catalysis can help cope with such demand, provided that rational, accurate and affordable design methods lead to the discovery of cost-effective and efficient catalysts. Here we derive a simple descriptor to simultaneously capture two parameters commonly used in catalytic materials design: strain and coordination. We test the descriptor with four different adsorbates on four active sites of two metals, and applying strain in the range of ±3 %, usually observed experimentally at catalytic metal surfaces. Furthermore, we use the descriptor to illustrate catalyst design availing strain and nearest-neighbor effects simultaneously for the oxygen reduction reaction, a reaction of high importance in fuel cells. The connection between coordination and strain helps in the search for robust yet rapid catalyst design methodologies.
Collapse
Affiliation(s)
- Federico Calle-Vallejo
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Aliaksandr S Bandarenka
- Physik-Department ECS, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, Munich, Germany
| |
Collapse
|
6
|
Liu J, Hibbitts D, Iglesia E. Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces. J Am Chem Soc 2017; 139:11789-11802. [PMID: 28825476 DOI: 10.1021/jacs.7b04606] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High CO* coverages lead to rates much higher than Langmuirian treatments predict because co-adsorbate interactions destabilize relevant transition states less than their bound precursors. This is shown here by kinetic and spectroscopic data-interpreted by rate equations modified for thermodynamically nonideal surfaces-and by DFT treatments of CO-covered Ru clusters and lattice models that mimic adlayer densification. At conditions (0.01-1 kPa CO; 500-600 K) which create low CO* coverages (0.3-0.8 ML from in situ infrared spectra), turnover rates are accurately described by Langmuirian models. Infrared bands indicate that adlayers nearly saturate and then gradually densify as pressure increases above 1 kPa CO, and rates become increasingly larger than those predicted from Langmuir treatments (15-fold at 25 kPa and 70-fold at 1 MPa CO). These strong rate enhancements are described here by adapting formalisms for reactions in nonideal and nearly incompressible media (liquids, ultrahigh-pressure gases) to handle the strong co-adsorbate interactions within the nearly incompressible CO* adlayer. These approaches show that rates are enhanced by densifying CO* adlayers because CO hydrogenation has a negative activation area (calculated by DFT), analogous to how increasing pressure enhances rates for liquid-phase reactions with negative activation volumes. Without these co-adsorbate effects and the negative activation area of CO activation, Fischer-Tropsch synthesis would not occur at practical rates. These findings and conceptual frameworks accurately treat dense surface adlayers and are relevant in the general treatment of surface catalysis as it is typically practiced at conditions leading to saturation coverages of reactants or products.
Collapse
Affiliation(s)
- Jianwei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao 266580, China.,Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States
| | - David Hibbitts
- Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States.,Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Enrique Iglesia
- Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
7
|
Calle-Vallejo F, Pohl MD, Bandarenka AS. Quantitative Coordination–Activity Relations for the Design of Enhanced Pt Catalysts for CO Electro-oxidation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01105] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Calle-Vallejo
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Marcus D. Pohl
- Physik-Department
ECS,Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Aliaksandr S. Bandarenka
- Physik-Department
ECS,Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany
| |
Collapse
|