1
|
Liu Y, Zhong X, Luo Z, Meng X, Li R, Zhong W, Yang L, Wang H, Wei D. The identification of a robust leucine dehydrogenase from a directed soil metagenome for efficient synthesis of L-2-aminobutyric acid. Biotechnol J 2023; 18:e2200590. [PMID: 37149736 DOI: 10.1002/biot.202200590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
L-2-aminobutyric acid (L-2-ABA) is a chiral precursor for the synthesis of anti-epileptic drug levetiracetam and anti-tuberculosis drug ethambutol. Asymmetric synthesis of L-2-ABA by leucine dehydrogenases has been widely developed. However, the limitations of natural enzymes, such as poor stability, low catalytic efficiency, and inhibition of high-concentration substrates, limit large-scale applications. Herein, by directed screening of a metagenomic library from unnatural amino acid-enriched environments, a robust leucine dehydrogenase, TvLeuDH, was identified, which exhibited high substrate tolerance and excellent enzymatic activity towards 2-oxobutyric acid. In addition, TvLeuDH has strong affinity for NADH. Subsequently, a three-enzyme co-expression system containing L-threonine deaminase, TvLeuDH, and glucose dehydrogenase was established. By optimizing reaction conditions, 1.5 M L-threonine could be converted to L-2-ABA with a 99% molar conversion rate and a space-time yield of 51.5 g·L-1 ·h-1 . In this process, no external coenzyme was added. The robustness of TvLeuDH allowed the reaction to be performed without the addition of extra salt as the buffer, demonstrating the simplest reaction system currently reported. These unique properties for the efficient and environmentally friendly production of chiral amino acids make TvLeuDH a particularly promising candidate for industrial applications, which reveals the great potential of directed metagenomics for industrial biotechnology.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xuezhao Zhong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zi Luo
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Rui Li
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Wa Zhong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Carboxylic acid reductases enable intramolecular lactamization reactions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Li M, Cui Y, Xu Z, Chen X, Feng J, Wang M, Yao P, Wu Q, Zhu D. Asymmetric Synthesis of
N
‐Substituted γ‐Amino Esters and γ‐Lactams Containing α,γ‐Stereogenic Centers via a Stereoselective Enzymatic Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Xi Chen
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| |
Collapse
|
4
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
5
|
Enhancing the atypical esterase promiscuity of the γ-lactamase Sspg from
Sulfolobus solfataricus
by substrate screening. Appl Microbiol Biotechnol 2019; 103:4077-4087. [DOI: 10.1007/s00253-019-09758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 11/26/2022]
|
6
|
Dynamic kinetic resolution of Vince lactam catalyzed by γ-lactamases: a mini-review. ACTA ACUST UNITED AC 2018; 45:1017-1031. [DOI: 10.1007/s10295-018-2093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Abstract
γ-Lactamases are versatile enzymes used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir. Owing to the broad applications in the healthcare industry, the resolution process of Vince lactam has witnessed tremendous progress during the past decades. Some of the most important advances are the enzymatic strategies involving γ-lactamases. The strong industrial demand drives the progress in various strategies for discovering novel biocatalysts. In the past few years, several new scientific breakthroughs, including the genome-mining strategy and elucidation of several crystal structures, boosted the research on γ-lactamases. So far, several families of γ-lactamases for resolution of Vince lactam have been discovered, and their number is continuously increasing. The purpose of this mini-review is to describe the discovery strategy and classification of these intriguing enzymes and to cover our current knowledge on their potential biological functions. Moreover, structural properties are described in addition to their possible catalytic mechanisms. Additionally, recent advances in the newest approaches, such as immobilization to increase stability, and other engineering efforts are introduced.
Collapse
|
7
|
Li H, Zheng G, Zhu S. Construction of an organelle-like nanodevice via supramolecular self-assembly for robust biocatalysts. Microb Cell Fact 2018; 17:26. [PMID: 29458431 PMCID: PMC5819227 DOI: 10.1186/s12934-018-0873-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background When using the microbial cell factories for green manufacturing, several important issues need to be addressed such as how to maintain the stability of biocatalysts used in the bioprocess and how to improve the synthetic efficiency of the biological system. One strategy widely used during natural evolution is the creation of organelles which can be used for regional control. This kind of compartmentalization strategy has inspired the design of artificial organelle-like nanodevice for synthetic biology and “green chemistry”. Results Mimicking the natural concept of functional compartments, here we show that the engineered thermostable ketohydroxyglutarate aldolase from Thermotoga maritima could be developed as a general platform for nanoreactor design via supramolecular self-assembly. An industrial biocatalyst-(+)-γ-lactamase was selected as a model catalyst and successful encapsulated in the nanoreactor with high copies. These nanomaterials could easily be synthesized by Escherichia coli by heterologous expression and subsequently self-assembles into the target organelle-like nanoreactors both in vivo and in vitro. By probing their structural characteristics via transmission electronic microscopy and their catalytic activity under diverse conditions, we proved that these nanoreactors could confer a significant benefit to the cargo proteins. The encapsulated protein exhibits significantly improved stability under conditions such as in the presence of organic solvent or proteases, and shows better substrate tolerance than free enzyme. Conclusions Our biodesign strategy provides new methods to develop new catalytically active protein-nanoreactors and could easily be applied into other biocatalysts. These artificial organelles could have widely application in sustainable catalysis, synthetic biology and could significantly improve the performance of microbial cell factories. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12934-018-0873-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China.
| | - Shaozhou Zhu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1340457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Daniel González-Martínez
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Ebert MC, Pelletier JN. Computational tools for enzyme improvement: why everyone can - and should - use them. Curr Opin Chem Biol 2017; 37:89-96. [PMID: 28231515 DOI: 10.1016/j.cbpa.2017.01.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
This review presents computational methods that experimentalists can readily use to create smart libraries for enzyme engineering and to obtain insights into protein-substrate complexes. Computational tools have the reputation of being hard to use and inaccurate compared to experimental methods in enzyme engineering, yet they are essential to probe datasets of ever-increasing size and complexity. In recent years, bioinformatics groups have made a huge leap forward in providing user-friendly interfaces and accurate algorithms for experimentalists. These methods guide efficient experimental planning and allow the enzyme engineer to rationalize time and resources. Computational tools nevertheless face challenges in the realm of transient modern technology.
Collapse
Affiliation(s)
- Maximilian Ccjc Ebert
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada; PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada; PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada; Département de chimie, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Highly efficient resolution of N-hydroxymethyl vince lactam by solvent stable lipase YCJ01. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ordóñez M, Cativiela C, Romero-Estudillo I. An update on the stereoselective synthesis of γ-amino acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|