1
|
Hu QQ, Chen QF, Zhang HT, Chen JY, Liao RZ, Zhang MT. Selective hydroxylation of benzene to phenol via Cu II(μ-O˙)Cu II intermediate using a nonsymmetric dicopper catalyst. Dalton Trans 2025; 54:1896-1904. [PMID: 39688361 DOI: 10.1039/d4dt02872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The one-step oxidation of benzene to phenol represents a significant and promising advancement in modern industries focused on the production of high-value-added chemical products. Nevertheless, challenges persist in achieving sufficient catalytic selectivity and preventing over-oxidation. Inspired by copper enzymes, we present a nonsymmetric dicopper complex ([CuII2(TPMAN)(μ-OH)(H2O)]3+, 1) for the selective oxidation of benzene to phenol. Utilizing H2O2 as the oxidant, complex 1 demonstrates remarkable catalytic activity (a TON of 14 000 within 29 hours) and selectivity exceeding 97%, comparable to the finest homogeneous catalyst derived from first-row transition metals. It is noteworthy that the significant substituent effect, alongside a negligible kinetic isotope effect (KIE = 1.05), radical trapping experiments, and an inconsistent standard selectivity test of the ˙OH radicals, all contradict the conventional Fenton mechanism and rebound pathway. Theoretical investigations indicate that the active CuII(μ-O˙)CuII-OH species generated through the cleavage of the O-O bond in the CuII(μ-1,1-OOH)CuI intermediate facilitates the hydroxylation of benzene via an electrophilic attack mechanism. The nonsymmetric coordination geometry is crucial in activating H2O2 and in the process of O-O bond cleavage.
Collapse
Affiliation(s)
- Qin-Qin Hu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Wei Q, Wu S, Zuo X, Sun Y. Generalized Synthesis of Highly-Dispersed, Ultrafine Transition Metal Nanoparticles on Silica Spheres for Enhanced Optical Absorption. SMALL METHODS 2024:e2301709. [PMID: 38678540 DOI: 10.1002/smtd.202301709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Indexed: 05/01/2024]
Abstract
Robust synthesis of ultrafine metal nanoparticles (ufMNPs) below 5 nm with clean surfaces and strong optical absorption in the visible spectral range is challenging due to their instability originating from large surface-to-volume ratios. This work reports a general strategy involving two sequential steps: i) loading metal precursor ions onto the surface of silica nanospheres (SiOx NSs) by forming a uniform coating of metal oxyhydroxide [MOy(OH)z] through preferred surface acid-base reactions and ii) thermally reducing MOy(OH)z in forming gas at elevated temperatures to form ufMNPs evenly dispersed on the surface of SiOx NSs. The capability of this synthesis strategy is verified by loading ufMNPs of various transition metals and bimetallic combinations onto the SiOx NSs. The ufMNPs exhibit strong optical absorption enhanced by the optical scattering resonances in the SiOx NSs, which generate intense electric fields near the surface of the SiOx NSs. The SiOx NSs also support stabilizing the ufMNPs, which do not need additional organic capping reagents. The successful synthesis of SiOx-NS-supported ufMNPs with clean surfaces and enhanced optical absorption is promising for exploring the photocatalytic properties of ufMNPs.
Collapse
Affiliation(s)
- Qilin Wei
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Siyu Wu
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Jin H, Cui P, Cao C, Yu X, Zhao R, Ma D, Song W. Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hongqiang Jin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
| | - Runqing Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Singha A, Bhaduri K, Kothari AC, Chowdhury B. Selective hydroxylation of benzene to phenol via C H activation over mesoporous Fe2O3-TiO2 using H2O2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
6
|
Liu Y, Zheng Y, Dong P, Zhang W, Wu W, Mao J. Atomically Dispersed Cu Anchored on Nitrogen and Boron Codoped Carbon Nanosheets for Enhancing Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61047-61054. [PMID: 34904829 DOI: 10.1021/acsami.1c17205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of high-performance heterogeneous catalytic materials is important for the rapid upgrade of chemicals, which remains a challenge. Here, the benzene oxidation reaction was used to demonstrate the effectiveness of the atomic interface strategy to improve catalytic performance. The developed B,N-cocoordinated Cu single atoms anchored on carbon nanosheets (Cu1/B-N) with the Cu-N2B1 atomic interface was prepared by the pyrolysis of a precoordinated Cu precursor. Benefiting from the unique atomic Cu-N2B1 interfacial structure, the designed Cu1/B-N exhibited considerable activity in the oxidation of benzene, which was much higher than Cu1/N-C, Cu NPs/N-C, and N-C catalysts. A theoretical study showed that the enhanced catalytic performance resulted from the optimized adsorption of intermediates, which originated from the manipulation of the electronic structure of Cu single atoms induced by B atom coordination in the Cu-N2B1 atomic interface. This study provides an innovative approach for the rational design of high-performance heterogeneous catalytic materials at the atomic level.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yamin Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Panpan Dong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenzhuang Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenjie Wu
- Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
7
|
Rahmani N, Amiri A, Ziarani GM, Badiei A. Review of some transition metal-based mesoporous catalysts for the direct hydroxylation of benzene to phenol (DHBP). MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kesharwani N, Chaudhary N, Haldar C. Heterogeneous Catalytic Oxidative Bromination and Oxidation of Thioethers By Vanadium(IV) Oxido Complex of Benzoylacetone and Effect of Solid Supports. Catal Letters 2021. [DOI: 10.1007/s10562-021-03594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ticconi B, Capocasa G, Cerrato A, Di Stefano S, Lapi A, Marincioni B, Olivo G, Lanzalunga O. Insight into the chemoselective aromatic vs. side-chain hydroxylation of alkylaromatics with H 2O 2 catalyzed by a non-heme imine-based iron complex. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01868f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Side-chain/ring oxygenated product ratio increases upon decreasing the benzylic bond dissociation energy in the oxidation of alkylaromatics with H2O2 catalyzed by an imine-based iron complex.
Collapse
Affiliation(s)
- Barbara Ticconi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Cerrato
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Lapi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Beatrice Marincioni
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| |
Collapse
|
10
|
Frateloreto F, Capocasa G, Olivo G, Abdel Hady K, Sappino C, Di Berto Mancini M, Levi Mortera S, Lanzalunga O, Di Stefano S. Increasing the steric hindrance around the catalytic core of a self-assembled imine-based non-heme iron catalyst for C-H oxidation. RSC Adv 2020; 11:537-542. [PMID: 35423066 PMCID: PMC8690968 DOI: 10.1039/d0ra09677f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Sterically hindered imine-based non-heme complexes 4 and 5 rapidly self-assemble in acetonitrile at 25 °C, when the corresponding building blocks are added in solution in the proper ratios. Such complexes are investigated as catalysts for the H2O2 oxidation of a series of substrates in order to ascertain the role and the importance of the ligand steric hindrance on the action of the catalytic core 1, previously shown to be an efficient catalyst for aliphatic and aromatic C-H bond oxidation. The study reveals a modest dependence of the output of the oxidation reactions on the presence of bulky substituents in the backbone of the catalyst, both in terms of activity and selectivity. This result supports a previously hypothesized catalytic mechanism, which is based on the hemi-lability of the metal complex. In the active form of the catalyst, one of the pyridine arms temporarily leaves the iron centre, freeing up a lot of room for the access of the substrate.
Collapse
Affiliation(s)
- Federico Frateloreto
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Karim Abdel Hady
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Carla Sappino
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Marika Di Berto Mancini
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Stefano Levi Mortera
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children's Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| |
Collapse
|
11
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|
12
|
Kumari S, Muthuramalingam S, Dhara AK, Singh UP, Mayilmurugan R, Ghosh K. Cu(I) complexes obtained via spontaneous reduction of Cu(II) complexes supported by designed bidentate ligands: bioinspired Cu(I) based catalysts for aromatic hydroxylation. Dalton Trans 2020; 49:13829-13839. [PMID: 33001072 DOI: 10.1039/d0dt02413a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper(i) complexes [Cu(L1-7)2](ClO4) (1-7) of bidentate ligands (L1-L7) have been synthesized via spontaneous reduction and characterized as catalysts for aromatic C-H activation using H2O2 as the oxidant. The single crystal X-ray structure of 1 exhibited a distorted tetrahedral geometry. All the copper(i) complexes catalyzed direct hydroxylation of benzene to form phenol with good selectivity up to 98%. The determined kinetic isotope effect (KIE) values, 1.69-1.71, support the involvement of a radical type mechanism. The isotope-labeling experiments using H218O2 showed 92% incorporation of 18O into phenol and confirm that H2O2 is the key oxygen supplier. Overall, the catalytic efficiencies of the complexes are strongly influenced by the electronic and steric factor of the ligand, which is fine-tuned by the ligand architecture. The benzene hydroxylation reaction possibly proceeded via a radical mechanism, which was confirmed by the addition of radical scavengers (TEMPO) to the catalytic reaction that showed a reduction in phenol formation.
Collapse
Affiliation(s)
- Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Ashish Kumar Dhara
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - U P Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
13
|
Qi Y, Xu Q, Tu G, Fu Y, Zhang F, Zhu W. Vanadium oxides anchored on nitrogen-incorporated carbon: An efficient heterogeneous catalyst for the selective oxidation of sulfide to sulfoxide. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|
15
|
Wu K, Zhan F, Tu R, Cheong WC, Cheng Y, Zheng L, Yan W, Zhang Q, Chen Z, Chen C. Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chem Commun (Camb) 2020; 56:8916-8919. [PMID: 32626859 DOI: 10.1039/d0cc03620j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isolated single-atom site metals/nitrogen-doped porous carbon (ISAS M/NPC, M = Fe, Co, Ni) catalysts are successfully prepared by a top-down polymerization-pyrolysis-etching-activation (PPEA) strategy, which uses dopamine as the precursor. Due to the isolated single atom Fe active sites and porous structure, the ISAS Fe/NPC catalyst displays a high benzene conversion up to 42.6% and nearly 100% phenol selectivity.
Collapse
Affiliation(s)
- Konglin Wu
- Institute of Clean Energy and Advanced Nanocatalysis, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao Q, Zhang L, Zhao M, Xu P, Wang X, Jia X, Zhang J. Vanadium Oxyacetylacetonate Grated on Metal Organic Framework as Catalyst for the Direct Hydroxylation of Benzene to Phenol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Liuxue Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Meiyan Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Panpan Xu
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xiulian Wang
- School of Energy and EnvironmentZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xu Jia
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Jie Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| |
Collapse
|
17
|
Yu ZH, Gan YL, Xu J, Xue B. Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catal Letters 2020. [DOI: 10.1007/s10562-019-03003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Anandababu K, Muthuramalingam S, Velusamy M, Mayilmurugan R. Single-step benzene hydroxylation by cobalt(ii) catalysts via a cobalt(iii)-hydroperoxo intermediate. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02601k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cobalt(ii) complexes reported as efficient and selective catalysts for single-step phenol formation from benzene using H2O2. The catalysis proceeds likely via cobalt(iii)-hydroperoxo species.
Collapse
Affiliation(s)
- Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Marappan Velusamy
- Department of Chemistry
- North Eastern Hill University
- Shillong-793022
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| |
Collapse
|
19
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Wang X, Song S, Zhang H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 2020; 49:736-764. [DOI: 10.1039/c9cs00379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review article focuses on the redox interaction-engaged strategy that offers a powerful way to construct multicomponent nanomaterials with precisely-controlled size, shape, composition and hybridization of nanostructures.
Collapse
Affiliation(s)
- Xiao Wang
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
21
|
Zhong C, Zhao H, Cao H, Huang Q. Polymerization of micropollutants in natural aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133751. [PMID: 31462391 DOI: 10.1016/j.scitotenv.2019.133751] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
Micropollutants with high ecotoxicological risks are frequently detected in aquatic environments, which has aroused great concern in recent years. Humification is one of the most important natural detoxification processes of aquatic micropollutants, and the core reactions of this process are polymerization and coupling. During humification, micropollutants are incorporated into the macrostructures of humic substances and precipitated from aqueous systems into sediments. However, the similarities and differences among the polymerization/coupling pathways of micropollutants in different oxidative systems have not been systematically summarized in a review. This article reviews the current knowledge on the weak oxidation-induced spontaneous polymerization/coupling transformation of micropollutants. First, four typical weak oxidative conditions for the initiation of micropollutant polymerization reactions in aquatic environments are compared: enzymatic catalysis, biomimetic catalysis, metal oxide oxidation, and photo-initiated oxidation. Second, three major subsequent spontaneous transformation pathways of micropollutants are elucidated: radical polymerization, nucleophilic addition/substitution and cyclization. Different solution conditions are also summarized. Furthermore, the importance of toxicity evolution during the weak oxidation-induced coupling/polymerization of micropollutants is particularly emphasized. This review provides a new perspective for the transformation mechanism and pathways of micropollutants from aquatic systems into sediments and the atmosphere and offers theoretical support for developing micropollutant control technologies.
Collapse
Affiliation(s)
- Chen Zhong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China.
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Efficient oxidation of benzene catalyzed by Cu(II) tetrazolato complexes under mild conditions. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Highly Selective Visible-Light Photocatalytic Benzene Hydroxylation to Phenol Using a New Heterogeneous Photocatalyst UiO-66-NH2-SA-V. Catal Letters 2019. [DOI: 10.1007/s10562-019-02842-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Devi M, Das B, Barbhuiya MH, Bhuyan B, Dhar SS, Vadivel S. Fabrication of nanostructured NiO/WO3with graphitic carbon nitride for visible light driven photocatalytic hydroxylation of benzene and metronidazole degradation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02904d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of a novel NiO/WO3nanohybrid modified graphitic carbon nitride nanosheets with enhanced photocatalytic activity towards photocatalytic hydroxylation of benzene and degradation of a pharmaceutical waste metronidazole.
Collapse
Affiliation(s)
- Meghali Devi
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | - Bishal Das
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | - Bishal Bhuyan
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | | |
Collapse
|
26
|
ElMetwally AE, Eshaq G, Yehia FZ, Al-Sabagh AM, Kegnæs S. Iron Oxychloride as an Efficient Catalyst for Selective Hydroxylation of Benzene to Phenol. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03590] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ahmed E. ElMetwally
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ghada Eshaq
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Fatma Z. Yehia
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed M. Al-Sabagh
- Petroleum applications department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Søren Kegnæs
- DTU Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat Commun 2018; 9:3861. [PMID: 30242151 PMCID: PMC6155020 DOI: 10.1038/s41467-018-06296-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022] Open
Abstract
Development of single-site catalysts supported by ultrathin two-dimensional (2D) porous matrix with ultrahigh surface area is highly desired but also challenging. Here we report a cocoon silk chemistry strategy to synthesize isolated metal single-site catalysts embedded in ultrathin 2D porous N-doped carbon nanosheets (M-ISA/CNS, M = Fe, Co, Ni). X-ray absorption fine structure analysis and spherical aberration correction electron microscopy demonstrate an atomic dispersion of metal atoms on N-doped carbon matrix. In particular, the Co-ISA/CNS exhibit ultrahigh specific surface area (2105 m2 g−1) and high activity for C–H bond activation in the direct catalytic oxidation of benzene to phenol with hydrogen peroxide at room temperature, while the Co species in the form of phthalocyanine and metal nanoparticle show a negligible activity. Density functional theory calculations discover that the generated O = Co = O center intermediates on the single Co sites are responsible for the high activity of benzene oxidation to phenol. Single-site catalysts supported by ultrathin two-dimensional (2D) porous matrix are desirable for catalytic reactions, yet their synthesis remains a great challenge. Herein the authors report a cocoon silk chemistry strategy to synthesize isolated metal single-site catalysts embedded in ultrathin 2D porous N-doped carbon nanosheets.
Collapse
|
28
|
Lai B, Mei F, Gu Y. Bifunctional Solid Catalyst for Organic Reactions in Water: Simultaneous Anchoring of Acetylacetone Ligands and Amphiphilic Ionic Liquid "Tags" by Using a Dihydropyran Linker. Chem Asian J 2018; 13:2529-2542. [PMID: 29873190 DOI: 10.1002/asia.201800567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/17/2018] [Indexed: 01/18/2023]
Abstract
The use of solid catalysts to promote organic reactions in water faces the inherent difficulty of the poor mass-transfer efficiency of organic substances in water, which is often responsible for insufficient reaction and low yields. To solve this problem, the solid surface can be manipulated to become amphiphilic. However, the introduction of surfactant-like moieties onto the surface of silica-based materials is not easy. By using an accessible dihydropyran derivative as a grafting linker, a surfactant-combined bifunctional silica-based solid catalyst that possessed an ionic liquid tail and a metal acetylacetonate moiety was prepared through a mild Lewis-acid-catalyzed ring-opening reaction with a thiol-functionalized silica. The surfactant-combined silica-supported metal acetylacetone catalysts displayed excellent catalytic activity in water for a range of reactions. The solid catalyst was also shown to be recyclable, and was reused several times without significant loss in activity.
Collapse
Affiliation(s)
- Bingbing Lai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Fuming Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
29
|
Tkachenko NV, Lyakin OY, Zima AM, Talsi EP, Bryliakov KP. Effect of different carboxylic acids on the aromatic hydroxylation with H2O2 in the presence of an iron aminopyridine complex. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Tkachenko NV, Ottenbacher RV, Lyakin OY, Zima AM, Samsonenko DG, Talsi EP, Bryliakov KP. Highly Efficient Aromatic C−H Oxidation with H2
O2
in the Presence of Iron Complexes of the PDP Family. ChemCatChem 2018. [DOI: 10.1002/cctc.201800832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolay V. Tkachenko
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Roman V. Ottenbacher
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Alexandra M. Zima
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Denis G. Samsonenko
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
- Nikolaev Institute of Inorganic Chemistry; Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| |
Collapse
|
31
|
Lyakin OY, Zima AM, Tkachenko NV, Bryliakov KP, Talsi EP. Direct Evaluation of the Reactivity of Nonheme Iron(V)–Oxo Intermediates toward Arenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleg Y. Lyakin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Alexandra M. Zima
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Nikolay V. Tkachenko
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
32
|
Hofmann LE, Mach L, Heinrich MR. Nitrogen Oxides and Nitric Acid Enable the Sustainable Hydroxylation and Nitrohydroxylation of Benzenes under Visible Light Irradiation. J Org Chem 2017; 83:431-436. [PMID: 29171756 DOI: 10.1021/acs.joc.7b02333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new type of waste recycling strategy is described in which nitrogen oxides or nitric acid are directly employed in photocatalyzed hydroxylations and nitrohydroxylations of benzenes. Through these transformations, otherwise costly denitrification can be combined with the synthesis of valuable compounds for various applications.
Collapse
Affiliation(s)
- Laura Elena Hofmann
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Leonard Mach
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
33
|
Han JW, Jung J, Lee YM, Nam W, Fukuzumi S. Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chem Sci 2017; 8:7119-7125. [PMID: 29147542 PMCID: PMC5637359 DOI: 10.1039/c7sc02495a] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
The present study reports the first example of photocatalytic hydroxylation of benzene with O2 and H2O, both of which are the most green reagents, under visible light irradiation to afford a high turnover number.
Photocatalytic hydroxylation of benzene to phenol by dioxygen (O2) occurs under visible light irradiation of an O2-saturated acetonitrile solution containing [RuII(Me2phen)3]2+ as a photocatalyst, [CoIII(Cp*)(bpy)(H2O)]2+ as an efficient catalyst for both the water oxidation and benzene hydroxylation reactions, and water as an electron source in the presence of Sc(NO3)3. The present study reports the first example of photocatalytic hydroxylation of benzene with O2 and H2O, both of which are the most green reagents, under visible light irradiation to afford a high turnover number (e.g., >500). Mechanistic studies revealed that the photocatalytic reduction of O2 to H2O2 is the rate-determining step, followed by efficient catalytic hydroxylation of benzene to phenol with H2O2, paving a new way for the photocatalytic oxygenation of substrates by O2 and water.
Collapse
Affiliation(s)
- Ji Won Han
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ;
| | - Jieun Jung
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; .,Department of Chemistry , Graduate School of Science , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ;
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ;
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; .,Faculty of Science and Engineering , Meijo University , SENTAN , Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-8502 , Japan
| |
Collapse
|
34
|
Zhang M, Wang YG, Chen W, Dong J, Zheng L, Luo J, Wan J, Tian S, Cheong WC, Wang D, Li Y. Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. J Am Chem Soc 2017; 139:10976-10979. [DOI: 10.1021/jacs.7b05372] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maolin Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang-Gang Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxing Chen
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Juncai Dong
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Luo
- Center
for Electron Microscopy, Tianjin University of Technology, Tianjin 300384, China
| | - Jiawei Wan
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shubo Tian
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weng-Chon Cheong
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Capocasa G, Olivo G, Barbieri A, Lanzalunga O, Di Stefano S. Direct hydroxylation of benzene and aromatics with H2O2 catalyzed by a self-assembled iron complex: evidence for a metal-based mechanism. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01895a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An imine-based catalyst easily obtained by self-assembly of cheap and commercially available starting materials selectively catalyzes the hydroxylation of aromatic compounds.
Collapse
Affiliation(s)
- Giorgio Capocasa
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Olivo
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Alessia Barbieri
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| |
Collapse
|