1
|
Skendrović D, Primožič M, Rezić T, Vrsalović Presečki A. Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. Int J Mol Sci 2024; 25:1971. [PMID: 38396648 PMCID: PMC10887991 DOI: 10.3390/ijms25041971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.
Collapse
Affiliation(s)
- Dino Skendrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Ana Vrsalović Presečki
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
3
|
Ge Y, Huang ZY, Pan J, Li CX, Zheng GW, Xu JH. Regiospecific C-H amination of (-)-limonene into (-)-perillamine by multi-enzymatic cascade reactions. BIORESOUR BIOPROCESS 2022; 9:88. [PMID: 38647597 PMCID: PMC10992285 DOI: 10.1186/s40643-022-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND (-)-Limonene, one of cyclic monoterpenes, is an important renewable compound used widely as a key building block for the synthesis of new biologically active molecules and fine chemicals. (-)-Perillamine, as derived from (-)-limonene, is a highly useful synthon for constructing more complicated and functionally relevant chemicals. AIM We aimed to report a more sustainable and more efficient method for the regiospecific C-H amination of (-)-limonene into (-)-perillamine. RESULTS Here, we report an artificial penta-enzymatic cascade system for the transformation of the cheap and easily available (-)-limonene into (-)-perillamine for the first time. This system is composed of cytochrome P450 monooxygenase, alcohol dehydrogenase and w-transaminase for the main reactions, as well as formate dehydrogenase and NADH oxidase for cofactor recycling. After optimization of the multi-enzymatic cascade system, 10 mM (-)-limonene was smoothly converted into 5.4 mM (-)-perillamine in a one-pot two-step biotransformation, indicating the feasibility of multi-enzymatic C7-regiospecific amination of the inert C-H bond of (-)-limonene. This method represents a concise and efficient route for the biocatalytic synthesis of derivatives from similar natural products.
Collapse
Affiliation(s)
- Yue Ge
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zheng-Yu Huang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Švarc A, Fekete M, Hernandez K, Clapés P, Findrik Blažević Z, Szekrenyi A, Skendrović D, Vasić-Rački Đ, Charnock SJ, Presečki AV. An innovative route for the production of atorvastatin side-chain precursor by DERA-catalysed double aldol addition. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
A multi-enzyme strategy for the production of a highly valuable lactonized statin side-chain precursor. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Bartsch S, Brummund J, Köpke S, Straatman H, Vogel A, Schürmann M. Optimization of Alcohol Dehydrogenase for Industrial Scale Oxidation of Lactols. Biotechnol J 2020; 15:e2000171. [DOI: 10.1002/biot.202000171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jan Brummund
- InnoSyn B.V. Urmonderbaan 22 Geleen NL‐6167RD The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Kim T, Stogios PJ, Khusnutdinova AN, Nemr K, Skarina T, Flick R, Joo JC, Mahadevan R, Savchenko A, Yakunin AF. Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of ( R)-1,3-butanediol. J Biol Chem 2019; 295:597-609. [PMID: 31806708 DOI: 10.1074/jbc.ra119.011363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Carbon-carbon bond formation is one of the most important reactions in biocatalysis and organic chemistry. In nature, aldolases catalyze the reversible stereoselective aldol addition between two carbonyl compounds, making them attractive catalysts for the synthesis of various chemicals. In this work, we identified several 2-deoxyribose-5-phosphate aldolases (DERAs) having acetaldehyde condensation activity, which can be used for the biosynthesis of (R)-1,3-butanediol (1,3BDO) in combination with aldo-keto reductases (AKRs). Enzymatic screening of 20 purified DERAs revealed the presence of significant acetaldehyde condensation activity in 12 of the enzymes, with the highest activities in BH1352 from Bacillus halodurans, TM1559 from Thermotoga maritima, and DeoC from Escherichia coli The crystal structures of BH1352 and TM1559 at 1.40-2.50 Å resolution are the first full-length DERA structures revealing the presence of the C-terminal Tyr (Tyr224 in BH1352). The results from structure-based site-directed mutagenesis of BH1352 indicated a key role for the catalytic Lys155 and other active-site residues in the 2-deoxyribose-5-phosphate cleavage and acetaldehyde condensation reactions. These experiments also revealed a 2.5-fold increase in acetaldehyde transformation to 1,3BDO (in combination with AKR) in the BH1352 F160Y and F160Y/M173I variants. The replacement of the WT BH1352 by the F160Y or F160Y/M173I variants in E. coli cells expressing the DERA + AKR pathway increased the production of 1,3BDO from glucose five and six times, respectively. Thus, our work provides detailed insights into the molecular mechanisms of substrate selectivity and activity of DERAs and identifies two DERA variants with enhanced activity for in vitro and in vivo 1,3BDO biosynthesis.
Collapse
Affiliation(s)
- Taeho Kim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Future Technology Center, LG Chem, Gangseo-gu, Seoul 150-721, Korea
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jeong Chan Joo
- Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Korea
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.
| |
Collapse
|
8
|
Angelastro A, Dawson WM, Luk LYP, Allemann RK. A Versatile Disulfide-Driven Recycling System for NADP+ with High Cofactor Turnover Number. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - William M. Dawson
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
9
|
Jiao XC, Pan J, Kong XD, Xu JH. Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase. Biochem Biophys Res Commun 2017; 482:159-163. [DOI: 10.1016/j.bbrc.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 12/01/2022]
|