1
|
Chen Y, Feng T, Zhu X, Tang Y, Xiao Y, Zhang X, Wang SF, Wang D, Wen W, Liang J, Xiong H. Ambient Synthesis of Porphyrin-Based Fe-Covalent Organic Frameworks for Efficient Infected Skin Wound Healing. Biomacromolecules 2024; 25:3671-3684. [PMID: 38720431 DOI: 10.1021/acs.biomac.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.
Collapse
Affiliation(s)
- Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuting Tang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yao Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Long S, Zhang L, Liu Z, Jiao H, Lei A, Gong W, Pei X. Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2968. [PMID: 36080004 PMCID: PMC9457902 DOI: 10.3390/nano12172968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The hydrogenation products of aromatic molecules with reducible groups (such as C=C, NO2, C=O, etc.) are relatively critical intermediate compounds in fine chemicals, but how to accurately reduce only specific groups is still challenging. In this work, a bimetallic Pt-Ni/Chitin catalyst was prepared for the first time by using renewable biomass resource chitin as support. As the carrier, the chitin was constructed into porous nanofibrous microspheres through the sol-gel strategy, which was favorable for the adhesion of nano-metals and the exchange of reactive substances due to its large surface area, porous structure, and rich functional groups. Then the Pt-Ni/Chitin catalyst was applied to selective hydrogenation with the model substrate of 4-nitrostyrene. As the highly dispersed Pt-Ni NPs with abundant exposed active sites and the synergistic effect of bimetals, the Pt-Ni/Chitin catalyst could efficiently and selectively hydrogenate only NO2 or C=C with yields of ~99% and TOF of 660 h-1, as well as good stability. This utilization of biomass resources to build catalyst materials would be important for the green and sustainable chemistry.
Collapse
Affiliation(s)
- Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Lingyu Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Zhuoyue Liu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Huibin Jiao
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Zheng Z, Li Z, Yang Y, Wang X, Wang S, Zhang Z, Kang T, Chen X, Wang WJ, Ding Y, Braunstein P, Liu P. Surface deposition of 2D covalent organic frameworks for minimizing nanocatalyst sintering during hydrogenation. Chem Commun (Camb) 2022; 58:10016-10019. [PMID: 35971977 DOI: 10.1039/d2cc03454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy of in situ depositing 2D COFs on heterogeneous catalysts was reported for the first time to suppress the agglomeration and sintering of the supported metal nanoparticles during hydrogenation processes. The COF-decorated nanocatalysts exhibited excellent stability in various hydrogenation reactions including the reduction of dimethyl oxalate (DMO), furfural, and other chemicals.
Collapse
Affiliation(s)
- Zhenqian Zheng
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China. .,State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China.
| | - Yuhao Yang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Xuepeng Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China.
| | - Song Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Ziyang Zhang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Ting Kang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China.
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China. .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire deChimie de Coordination, Strasbourg, France
| | - Pingwei Liu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| |
Collapse
|
4
|
Ivleva EA, Khamzina MR, Zaborskaya MS, Klimochkin YN. Nucleophilic Substitution Reactions of 1-Nitroxy-3-(nitroxymethyl)adamantanes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Căta L, Terenti N, Cociug C, Hădade ND, Grosu I, Bucur C, Cojocaru B, Parvulescu VI, Mazur M, Čejka J. Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki-Miyaura Cross-Coupling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10428-10437. [PMID: 35171567 DOI: 10.1021/acsami.1c24429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Palladium nanoparticles entrapped in porous aromatic frameworks (PAFs) or covalent organic frameworks may promote heterogeneous catalytic reactions. However, preparing such materials as active nanocatalysts usually requires additional steps for palladium entrapment and reduction. This paper reports as a new approach, a simple procedure leading to the self-entrapment of Pd nanoparticles within the PAF structure. Thus, the selected Sonogashira synthesis affords PAF-entrapped Pd nanoparticles that can catalyze the C-C Suzuki-Miyaura cross-coupling reactions. Following this new concept, PAFs were synthesized via Sonogashira cross-coupling of the tetraiodurated derivative of tetraphenyladamantane or spiro-9,9'-bifluorene with 1,6-diethynylpyrene, then characterized them using powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, X-ray photoelectron spectroscopy, high-resolution scanning transmission electron microscopy, and textural properties (i.e., adsorption-desorption isotherms). The PAF-entrapped Pd nanocatalysts showed high catalytic activity in Suzuki-Miyaura coupling reactions (demonstrated by preserving the turnover frequency values) and stability (demonstrated by palladium leaching and recycling experiments). This new approach presents a new class of PAFs with unique structural, topological, and compositional complexities as entrapped metal nanocatalysts or for other diverse applications.
Collapse
Affiliation(s)
- Lidia Căta
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 11, Arany Janos str., Cluj-Napoca, 400028 Cluj, Romania
| | - Natalia Terenti
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 11, Arany Janos str., Cluj-Napoca, 400028 Cluj, Romania
| | - Cristina Cociug
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 11, Arany Janos str., Cluj-Napoca, 400028 Cluj, Romania
| | - Niculina Daniela Hădade
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 11, Arany Janos str., Cluj-Napoca, 400028 Cluj, Romania
| | - Ion Grosu
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 11, Arany Janos str., Cluj-Napoca, 400028 Cluj, Romania
| | - Cristina Bucur
- National Institute of Materials Physics, 405 Atomiştilor Str., Măgurele 077125, Ilfov, Romania
| | - Bogdan Cojocaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd., no. 4-12, Bucharest 030016, Romania
| | - Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd., no. 4-12, Bucharest 030016, Romania
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| |
Collapse
|
6
|
Wan X, Wu T, Song L, Pan W, Li N, Tang B. Selenium-engineered covalent organic frameworks for high-efficiency and long-acting cancer therapy. Chem Commun (Camb) 2021; 57:6145-6148. [PMID: 34042122 DOI: 10.1039/d1cc01830b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porphyrin-containing covalent organic framework (COF) was synthesized as a substrate for decorating selenium nanoparticles (Se NPs) via in situ reduction. Se NP-mediated therapy (SeT) was carried out in conjunction with photodynamic therapy (PDT) to provide an increased anticancer effect and remedy the constrained efficacy of PDT.
Collapse
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Tong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Liqun Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
7
|
James AM, Reynolds J, Reed DG, Styring P, Dawson R. A Pressure Swing Approach to Selective CO 2 Sequestration Using Functionalized Hypercrosslinked Polymers. MATERIALS 2021; 14:ma14071605. [PMID: 33806093 PMCID: PMC8036798 DOI: 10.3390/ma14071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.
Collapse
Affiliation(s)
- Alex M. James
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Jake Reynolds
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Daniel G. Reed
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Peter Styring
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Robert Dawson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
- Correspondence: ; Tel.: +44-114-222-9357
| |
Collapse
|
8
|
Insights into the Pt (111) Surface Aid in Predicting the Selective Hydrogenation Catalyst. Catalysts 2020. [DOI: 10.3390/catal10121473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The d-band center position of the metal catalyst is one of the most important factors for catalytic selective hydrogenation, e.g., the conversion of nitrostyrene to aminostyrene. In this work, we modulate the d-band center position of the Pt surface via H coverage manipulation in order to assess the highly efficient selective hydrogenation catalyst using density functional theory (DFT) calculation, which is validated experimentally. The optimal transition metal catalysts are first screened by comparing the adsorption energy values of two ideal models, nitrobenzene and styrene, and by correlating the adsorption energy with the d-band center positions. Among the ten transition metals, Pt nanoparticles have a good balance between selectivity and the conversion rate. Then, the surface hydrogen covering strategy is applied to modulate the d-band center position on the Pt (111) surface, with the increase of H coverage leading to a decline of the d-band center position, which can selectively enhance the adsorption of nitro groups. However, excessively high H coverage (e.g., 75% or 100%) with an insufficiently low d-band center position can switch the chemisorption of nitro groups to physisorption, significantly reducing the catalytic activity. Therefore, a moderate d-band center shift (ca. −2.14 eV) resulted in both high selectivity and catalytic conversion. In addition, the PtSn experimental results met the theoretical expectations. This work provides a new strategy for the design of highly efficient metal catalysts for selective hydrogenation via the modulation of the d-band center position.
Collapse
|
9
|
Affiliation(s)
- Hai‐Yang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
10
|
Klimochkin YN, Ivleva EA, Moiseev IK. Selective Nitroxylation of Adamantane Derivatives in the System Nitric Acid–Acetic Anhydride. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Klimochkin YN, Leonova MV, Ivleva EA. Chemoselectivity of Nitroxylation of Cage Hydrocarbons. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802010005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Trandafir MM, Neaţu F, Chirica IM, Neaţu Ş, Kuncser AC, Cucolea EI, Natu V, Barsoum MW, Florea M. Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mihaela M. Trandafir
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Florentina Neaţu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Iuliana M. Chirica
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Ştefan Neaţu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andrei C. Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Elena I. Cucolea
- Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street, no. 1, 077167 Tancabesti, Ilfov, Romania
| | - Varun Natu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michel W. Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mihaela Florea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
13
|
Liu J, Wang N, Ma L. Recent Advances in Covalent Organic Frameworks for Catalysis. Chem Asian J 2020; 15:338-351. [DOI: 10.1002/asia.201901527] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jianguo Liu
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
| | - Nan Wang
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
- School of Environmental Science and EngineeringTianjin University Tianjin 300350 China
| | - Longlong Ma
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
- School of Environmental Science and EngineeringTianjin University Tianjin 300350 China
| |
Collapse
|
14
|
Puthiaraj P, Yu K, Shim SE, Ahn WS. Pd(II)-immobilized on a nanoporous triazine-based covalent imine framework for facile cyanation of haloarenes with K4Fe(CN)6. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Modak A, Bhanja P, Bhaumik A. Pt Nanoparticles Supported over Porous Porphyrin Nanospheres for Chemoselective Hydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201802108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arindam Modak
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
- Technical Research CentreS. N. Bose National Centre for Basic Sciences Block-JD, Sector-III Salt Lake, Kolkata- 700106 India
| | - Piyali Bhanja
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Asim Bhaumik
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
16
|
Trandafir MM, Pop L, Hӑdade ND, Hristea I, Teodorescu CM, Krumeich F, van Bokhoven JA, Grosu I, Parvulescu VI. Spirobifluorene‐based Porous Organic Polymers as Efficient Porous Supports for Pd and Pt for Selective Hydrogenation. ChemCatChem 2018. [DOI: 10.1002/cctc.201801247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mihaela Mirela Trandafir
- Biochemistry and Catalysis Department of Organic ChemistryUniversity of Bucharest Bucharest 030016 Romania
| | - Lidia Pop
- Department of Chemistry Faculty of Chemistry and Chemical EngineeringBabes-Bolyai University Cluj-Napoca 400028 Romania
| | - Niculina D. Hӑdade
- Department of Chemistry Faculty of Chemistry and Chemical EngineeringBabes-Bolyai University Cluj-Napoca 400028 Romania
| | - Ioana Hristea
- Department of Surfaces and InterfacesNational Institute of Materials Physics Magurele-Ilfov 077125 Romania
| | - Cristian Mihail Teodorescu
- Department of Surfaces and InterfacesNational Institute of Materials Physics Magurele-Ilfov 077125 Romania
| | - Frank Krumeich
- Institute for Chemical and BioengineeringETH Zurich HCI D 130 Zurich 8093 Switzerland
- Paul Scherrer Institute Villigen 5323 Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and BioengineeringETH Zurich HCI D 130 Zurich 8093 Switzerland
- Paul Scherrer Institute Villigen 5323 Switzerland
| | - Ion Grosu
- Department of Chemistry Faculty of Chemistry and Chemical EngineeringBabes-Bolyai University Cluj-Napoca 400028 Romania
| | - Vasile I. Parvulescu
- Biochemistry and Catalysis Department of Organic ChemistryUniversity of Bucharest Bucharest 030016 Romania
| |
Collapse
|
17
|
Li X, Guo J, Tong R, Topham PD, Wang J. Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Lou Y, Xu J, Wu H, Liu J. Hollow carbon anchored highly dispersed Pd species for selective hydrogenation of 3-nitrostyrene: metal-carbon interaction. Chem Commun (Camb) 2018; 54:13248-13251. [DOI: 10.1039/c8cc07430e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow nanocarbon supported Pd species are highly active (TOF of 21 845 h−1), selective (97%), and stable (4 cycles) for selective hydrogenation of 3-nitrostyrene to 3-ethylnitrobenze.
Collapse
Affiliation(s)
- Yang Lou
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Jia Xu
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Honglu Wu
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Jingyue Liu
- Department of Physics
- Arizona State University
- Tempe
- USA
| |
Collapse
|