Fang H, Yang J, Wen M, Wu Q. Nanoalloy Materials for Chemical Catalysis.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018;
30:e1705698. [PMID:
29450918 DOI:
10.1002/adma.201705698]
[Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/18/2017] [Indexed: 06/08/2023]
Abstract
Nanoalloys (NAs), which are distinctly different from bulk alloys or single metals, take on intrinsic features including tunable components and ratios, variable constructions, reconfigurable electronic structures, and optimizable performances, which endow NAs with fascinating prospects in the catalysis field. Here, the focus is on NA materials for chemical catalysis (except photocatalysis or electrocatalysis). In terms of composition, NA systems are divided into three groups, noble metal, base metal, and noble/base metal mixed NAs. Their design and fabrication for the optimization of catalytic performance are systematically summarized. Additionally, the correlations between the composition/structure and catalytic properties are also mentioned. Lastly, the challenges faced in current research are discussed, and further pathways toward their development are suggested.
Collapse